Xerox Symbol
Sigma,5-9 Computers

Language and Operations
Reference Manual

FROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXEROX
OXEROXEFROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXET:
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXFROXEROXER
) ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROXE

[label]
name

[label)
| Iabei]

[chel]

label

[label]
[label]

[label]
(label]

(label]
[label]

 SYMBOL DIRECTIVES

ASECT
BOUND
COM, field list
CSECT
paTa(,f]
DEF

DOT

END

EQU
GEN, field list
coto[,k]
Loc(,n)
LOCAL
ORG[, n]
PAGE

REF
RES[, n)
SREF
SYSTEM
TEXT
TEXTC

bbuhdafy
vcxhi;e |i:s'r
[value]
vclue] [, e
symbol 1 [..
exp
[exp)
exp
value list
l‘cbie|][,.
location
[name] fene

location

symboll[,..

U

sym’bol 1 (...

name

1

i

Ccs

cs

,value]
n

. ,symboln]

.. ,Iabel]
n

, name]
n

.y symboln]

p symboln]

Page No.

19

97

19
28
25
22
22
24
26
22
16
23

30
25

25
21

"~ 30

30

Xerox Symbol

Sigma 5-9 Computers

Language and Operations

Reference Manual

FIRST EDITION

90 17 90A

June 1971

XEROX

Printed in U.S.A.

NOTICE

This publication, 90 17 90A, documents version HOO of Xerox Sigma 5-9 Symbol

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 8 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Basic Control Monitor (BCM)/BP, RT Reference Manual
Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual
Xerox Batch Time-Sharing Monitor (BTM)/TS Reference Manual
Xerox Batch Time-Sharing Monitor (BTM)/TS User's Guide

Manual Type Codes: BP - batch processing, LN - language, OPS - operations,

.

Publication No.

90 09 59
90 17 13
90 09 50
90 17 49
90 17 33
90 09 53
90 09 54
90 1577
90 16 79

RBP - remote batch processing,

RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice.

depend on a specific configuration of equipment such as additional tape units or larger memory. Customers s

The availability or performance of some features may

hould consult their XDS sales representative for details.

1.

INTRODUCTION

Programming Features

Error Detection

Program Operation

Sigma Mathematical Library

LANGUAGE ELEMENTS AND SYNTAX

Language Elements
Characters

Symbols

Constants

Self-Defining Terms
C

X

O
D

FX

FS

FL

Literals

Expressions

Operators and Expression Evaluation

Syntax

Statements

Fields

Entries

Comments Lines

Processing of Symbols
Defining Symbols

Symbo! References

Previously Defined References
Forward References

External References

Classification of Symbols
Symbol Table

Absolute and Relocatable Values

Symbol Values
Expression Values

ADDRESSING

Relative Addressing

Addressing Functions

$, 3%

BA
HA

WA

DA
Address Resolution

CONTENTS

PR —

*O*O*O*O\OCDOO&VQO\O\O\LHUIA#&QWOCJMNNN

>Soocoo

12
12
12
12
13
13
13
13

Location Counters

Setting the Location Counters

ORG

LOC

BOUND

RES

Program Sections

ASECT

CSECT

INSTRUCTIONS

SYMBOL DIRECTIVES

Assembly Control

SYSTEM

END

DO}

GOTO

Symbol Manipulation
LOCAL

EQU

DEF

REF

SREF

Data Generation

GEN

COM

CF

AF

AFA

DATA

TEXT

TEXTC

Listing Control

PAGE

ASSEMBLY LISTINGS

Symbol Assembly Listing

Equate Symbols Line

Assembly Listing Line
Ignored Source Image Line

Error Line

X Error in Symbol
Literal Listing Line

Symbol Abort Line

Error Count Line

Symbol Dictionary

Symbo! Cross-Reference Listing

14
16
16
16
16
18
18
18
18

20

21

21
21
22
22
22
23
23
24
25
25
25
26
26
27
27
28
28
28
30
30
30
30

31

31
31
31
32
32
32
32
34
34
34
34

U wN —

OPERATIONS

Assign Control Command
Symbol Control’ Command

Program Deck Structures

Concordance Listing

BTM- Operations
Input/Qutput Assignments

Assemblér Options

Listing Format

APPENDIXES

SUMMARY OF SYMBOL DIRECTIVES

SUMMARY OF INSTRUCTION MNEMONICS

FIGURES

Xerox Sigma Symbolic Coding Form

Symbol Listing Format

TABLES

Symbol Character Set

Symbol Operators

Symbol Error Codes
Input/Output Assignments

Symbol Options

35

35
35
35
35
35
35
36
36

37

39

31

33
35
36

NV WOWNO>UGMAWOWN —

41,
42,

. DA Function
. Address Resolution
. ORG Directive.
. ORG Directive
. LOC Directive

. RES Directive
. Program Sect'oning
. Program Sectioning
. Sigma 5-7 Instructions
. END Directive
. DO1 Directive
. GOTO Directive
. LOCAL Directive
. LOCAL Directive
. LOCAL Directive
. LOCAL Directive
. EQU Directive
. DEF Directive
. REF Directive
. REF Directive

. GEN Directive
. GEN Directive
. GEN Directive
. COM Directive and CF Function

. COM Directive and AF Function

. COM Directive and AFA Function
. COM Directive'sError Notification
. DATA Directive
. TEXT Directive

EXAMPLES

Storing Fixed-Point Decimal Constants
Label Field Entry

Command Field Entry:
Argument Field Entry

Expressions Using + and - Operafors
$,$$ Functions

BA Function

HA Function

WA Function

BOUND Directive

GEN Directive

TEXTC Directive

X Type Assembly Listing Errors

WWWRNNNNNNDNODMDNDRNNDNNNDNDDNDNDNDDNNDN = = ot — — e ot =2 e

1. INTRODUCTION

Xerox Symbol is a one-pass assembler that reads source
language programs and converts them to object language
programs. Symbol outputs an object program and an assem -
bly listing. The object language format is explained in
the BCM BP, RT Reference Manual, 90 09 53; the format of
the assembly listing is describedin Chapter 6 of this manual.

PROGRAMMING FEATURES

Symbol provides such programming features as forward
references, literals, and external definitions. Since these
types of items cannot be defined by asingle-pass assembler,
Symbol produces information that encbles the loader to
provide the appropriate linkages at load time.

Other features of Symbol:

e Self-defining constants that facilitate use of hexa-
decimal, decimal, octal, floating-point, and fixed-
point values.

e The facility for writing large programs in segments or
modules. The assembler provides information neces-
sary for the loader to complete the linkage between
modules when they are loaded into memory at execu-
tion time.

e Values that may be specified in byte, halfword, word,
and doubleword lengths.

e Instructions that are automatically aligned on word
boundaries.

e The COM directive, which allows the user to define
instructions and table areas.

o Standard procedures that provide mnemonic repertories
for processing instructions available with the various
hardware options.

e TEXTC and TEXT directives, which simplify coding of
output messages and eliminate the need for character
counts.

ERROR DETECTION

During an assembly the source program is checked for
syntax errors. If any is found, an dppropriate notification
is given, and the assembly operation continues. Although
an assembled program containing errors generally cannot be
executed, the assembler continues to the end of the program
in order to locate any additional errors in the same run.

PROGRAM OPERATION

The Symbol assembler can operate as a stand-alone processor
or under controf of the Xerox Sigma Basic Control Monitor
or Batch Processing Monitor. In either case object programs
produced by Symbol can be loaded for execution by the
Stand-Alone Loader (described in the Stand-Alone Systems
OPS Reference Manual, 90 1053) or by one of the Monitors.

SIGMA MATHEMATICAL LIBRARY

Alibrary of mathematical routines is available to the assem-
bly language programmer. Thesemay be used as stand-alone
routines or —under one of the Xerox Monitor systems — as rou-
tines available at load time from a peripheral input device.
The Mathematical Routines/Technical Manual, 90 09 06,
provides a complete description of these routines.

Introduction 1

2. LANGUAGE ELEMENTS AND SYNTAX

LANGUAGE ELEMENTS
Input to the assembler consists of a sequence-of characters
combined to form assembly language elements. These lan-
guage elements (which include symbols, constants, expres=

sions, and literals) make up the program statements that
comprise a source program.

CHARACTERS

The Symbol character set is shown in Table 1.

Table 1. Symbol Character Set

Alphabetic: A through Z, and §, @, %, :, o (break
X character — prints as "underscore")
Numeric: 0 through 9
Special
Characters: Blank

(Left parenthesis

) Right parenthesis

+ Add (or positive value)

- Subtract (or negative value)

Indirect addressing prefix or com-
ments line indicator

, Comma

Constant delimiter (single quota-
tion mark)

= Introduces a literal

Decimal point

The colon is an alphabetic character used in internal sym-
bols of standard Xerox software. It is included in the names
of Monitor routines (M:READ) and assembler routines (S:IFR).
To avoid conflict between user symbols and those employed
by Xerox software, it is suggested that the colonbe excluded
from user symbols.

SYMBOLS

Symbols are formed from combinations of characters.
Symbols provide programmers with a convenient means

2 Language Elements and Syntax

of identifying program elements so they. can be referred:
to by other elements. Symbols must conform to the fol-
lowing rules:

1. Symbols may consist of from 1'to 8 alphanumeric char-
acters: A-Z, S, @, #, 1, 0-9. At least one of
the characters in a symbol must be alphabetic. No
special characters or blanks can appear in a symbol.

2. The characters S and $$ may be used in the argument
field of a statement to represent the current value of
the execution and load location counters, respectively
(see Chapter 3); these characters must not be used as
label field entries by themselves.

The following are exarmples of valid symbots:
ARRAY
R1
INTRATE
BASE
7TEMP
#CHAR
SPAYROLL

$ (execution location counter)

The following are examples of invalid symbols:

BASE PAY Blanks may not appear in symbols.

TWO=2 Special characters (=) are not per-
mitted in symbols.

CONSTANTS

A constant is a self-defining language element. lts value
is inherent in the constant itself, and it is assembled as
part of the statement in which it appears.

Self-defining terms are useful in specifying constant values
within a program via the EQU directive (os opposed to enter-
ing them through an input device)and for use in constructs
that require a value rather than the address of the location
where that value is stored. For example, the Load Immedi-
ate instruction and the BOUND directive both may use
self-defining terms:

LI, 2 57

2, 57, and 8 are self~defining terms
BOUND 8

SELF-DEFINING TERMS

Self-defining terms are considered to be absolute (hon-
relocatable) items since their values do not change when
the program is relocated. There are two forms of self-
defining terms:

1. The decimal digit string in which the constant is
written as a decimal integer constant directly in the
instruction:

LW,R HERE+6 "6" is a decimal digit string.

The maximum value of o decimal integer constant is

limited to that which can be contained in one word

(32 bits).

2. The general constant form in which the type of con-
stant is indicated by a code character, and the value
is written as a constant string enclosed by single quo-
tation marks:

LW,R HERE+X'7AF' "7AF" is a hexadeci-
mal constant repre-
senting the decimal
value 1967,

There are seven types of general constants:

Code 1_'y_pe_

C Character string constant

X Hexadecimal constant

O Octal constant

D Decimal constant

FX Fixed-point decimal constant
FS Floating=point short constant
FL Floating=point long constant

C: Character String Constant. A character string constant
consists of a string of EBCDIC! characters enclosed by sin-
gle quotation marks and preceded by the letter C:

C'ANY CHARACTERS'

Each character in a character string constant is allocated
eight bits (one byte) of storage.

"A table of Extended Binary-Coded Decimal Interchange
Codes can be found in the Sigma Computer Reference
Manuals.

Because single quotation marks are used as syntactical

characters by the assembler, a single quotation mark in a
character string must be represented by the appearance of
two consecutive quotation marks. For example,

ClABIICul
represents the string

AB'C!

Character strings are stored four characters per word. The
descriptions of TEXT and TEXTC in Chapter 5 provide posi-
tioning information pertaining to the character strings used
with these directives. In all other usages, character strings
must not contain more than sixteen characters. If the string
contains less than sixteen characters, the characters are
right=-justified and a null EBCDIC character(s) fills out
the word.

Note: [If any constant string enclosed by single quotation
marks appears in an object program without one of
the type codes listed above, it is assumed to be a
character string constant dnd is processed as if type
code C had preceded the string.

X: Hexadecimal Constant. A hexadecimal constant con-
sists of an unsigned hexadecimal number enclosed by single
quotation marks and preceded by the letter X:

X'9CONF!

The assembler generates four bits of storage for each hexa-
decimal digit. The maximum value of a hexadecimal con-
stant is limited to that which can be contained in one

word (32 bits).

The hexadecimal digits and their binary equivalents are as
follows:

0 - 0000 8 - 1000
1 - 0001 9 - 1001
2 - 0010 A-1010
3 - 001} B-1011
4 -0100 C- 1100
5-0101 D- 1101
6 - 0110 E-1110
7-011N F-T1111

Information concerning hexadecimal arithmetic and hexa-
decimal to decimal conversions is included in the Com-
puter Reference Manuals.

Language Elements 3

O: Octal Constant: An octal constant consists of an
unsigned octal number enclosed by single quotation marks
and preceded by the letter O:

Q'7314526'

The maximum value is limited to that which can be con-
tained in one word (32 bits). The size of the constant in
binary digits is three times the number of octal digits speci-
fied, and the constant is right-justified in its field. For
example:

Constant Binary Value Hexadecimal Value

0'1234' 001 010011 100 0010 1001 1100 (29C)

The octal digits and their binary equivalents are as follows:

0 - 000 4 - 100
1 -001 5-101
2 -010 6-110
3-on 7-11

D: Decimal Constant. A decimal constant consists of an
optionally signed value of 1 through 31 decimal digits,
enclosed by single quotation marks and preceded by the
letter D.

D'735698721' = D'+735698721'

The constant generated by Symbol is of the binary -coded
decimal form required for Sigma 7 decimal instructions.
In this form, the sign! occupies the last digit position, and
each digit consists of four bits. For exampl e:

Constant Value

C'+99 1001 1001 1100

A decimal constant could be used in an instruction as
follows:

LW,R L(D'99")

Load (LW) as a literal (L) into register R the decimal con-
stant (D)99.

The value of a decimal constant is limited to that which
can be contained in four words (128 bits).

fa plus sign is a 4-bit code of the form 1100. A minus sign
is a 4-bit code of the form 1101.

4 Language Elements

FX: Fixed-Point Decimal Constant. A fixed-point decimal
constant consists of the fol lowing components in the order
listed, enclosed by single quotation marks and preceded
by the letters FX:

1. An optional algebraic sign.
2. d, d., dd, or.d, wheredisa decimal digit string.

3. An optional exponent:

The letter E followed optionally by an algebraic
sign, followed by one or two decimal digits.

4. Abinary scale specification:

The letter B followed optionally by an algebraic
sign, followed by one or two decimal digits that
designate the teiminal bit of the integer portion
of the constan’ (i.e., the position of the binary
point in the number). Bit position numbering be-
gins at zero.

Parts 3 and 4 may occur in any relative order:

FX'.007812586'

0000/0000/0000/0100/0000[0000{00000000

172 314 5 6/\7 § 9 10 11 T2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 &

FX'1.25E-1B17"

0000000 000000000000]OOOlOOOOOOOO

0 1 2 34 5 6 718 9 IOH1213\415IéI7/\1819202\2223|242526272529303|

FX'13.28125B2E-2"

b 000l0100{0100/0000/0000j0000(0000[0000

1 2/\3-4 5 6 718 9 10N 1213\4I516|7IB19202122232425262725293031

The value of a fixed-point decimal constant islimitedto that
which can be stored in asingle word (32bits). See Example 1.

FS: Floating=Point Short Constant. A floating-point short
constant consists of the following components in order,
enclosed by single quotation marks, and preceded by the
letters FS:

1. An optional algebraic sign.

2. d, d., d.d, or .d, where d is a decimal digit
string.
3. An optional exponent.

Theletter E followed optionally by an algebraic
sign followed by one or two decimal digits.

The implied binary point may extend beyond the limits on
single words (i.e., FX'1.25B40').

Example 1. Storing Fixed-Point Decimal Constants.

Assume a halfword (16 bits) is to be used for two fields
of data; the first field requires seven bits, and the sec- |
ond field requires nine bits.

The number FX'3. 75B4' is to be stored in the first field.
The binary equivalent of this number is 11 5 11. The
caret represents the position of the binary point. Since
the binary point is positioned between bit positions 4
and 5, the number would be stored as

Field 1 Field 2

01234556

Bit positions
olofo]1[1[1 1
N

The number FX'.0625B-2" is to be stored in the second |
field. The binary equivalent of this number is 0001. !
The binary point is to be located between bit posi-

tions =2 and -1 of field 2; therefore, the number would ;
be stored as

Field 1 Field 2 1

0123456012345678
o[oJo[1]1T1]1]o]o]1]o]o]o]o]o]o
A

Bit positions

In generating the second number, Symbol considers bit
position -1 of field 2 to contain a zero, but does not
actually generate a value for that bit position since it
overlaps field 1. This is not an error to the assembler.
However, if Symbol were requested to place a 1 in bit |
position -1 of field 2, an error weuld be detected since
significant bits cannot be generated fo be stored out-
side the field range. Thus, leading zeros may be trun-
cated from the number in a field, but significant digits
are not allowed to overlap from one field to another.

Thus, a floating-point short constant’ could appear as

FS'5.5E-3"

3 F 1 6 8 7 2 B

0 1 2 314 5 6 718 9 10 11112 13 14 15816 17 18 19120 21 22 23124 25 26 27128 29 30 3)

The value of a floating-point short constant is limited to
that which can be stored in a single word (32 bits).

FL: Floating-Point Long Constant. A floating=-point long
constant consists of the following components in order, en-

closed by single quotation marks and preceded by the letters FL:

1. An optional algebraic sign.

2. d, d., d.d, or .d, where d Is a decimal digit string.

"Refer to the appropriate Sigma Computer Reference Manual
for an explanation of floating-point format.

3. An optional exponent:

The letter E followed optionatly by an algebraic
sign, followed by one or two decimal digits.

Thus, a floating-point long constant’ could appear as

FL'2987574839928. E~11'

4 2 1 D E 0 3 1

0 1 2 314 5 6 71018 ¢ 10 11213 14 15016 17 18 19f20 21 22 22]24 25 2o 2708 29 o0 A1

0 C 0 E 6 E 9 4

0 1 2 314 5 & 75¥8 9 10 1213 14 13700 17 06 19]20 21 22 23120 00 20 7100 Lo 8

The value of a floating-point long constant is limited to
that which can be stored in two words (64 bits).

LITERALS

A literal is a constant or symbol enclosed by parentheses
and preceded by the letter L:

L(-185) decimal value -185

L(X'5DF")

hexadecimal value 5DF

L(AB) an address value

of a constant or symbol preceded by an equals sign:
=-185 decimal value -185

=X'5DF'

hexadecimal value 5DF
=AB an address value

Literals are transformed into references to data values rather
than actual values. Literals may be used in any construct
that requires an address of a data value rather than the
actual value. For example, the Load Word instruction re-
quires the address of the value to be loaded into the regis-
ter, and use of a literal will satisfy that requirement:

Lw,7 L(768) The value 768 is stored in

the literal table and its
address is assembled as part
of this instruction.

A literal must not be used as o term in a multitermed ex-

pression; however, either literal form may be used in an
addressing function expression. For example,

BA (HA(L(S + 1))

is valid.
A literal preceded by an asterisk specifies indirect

addressing:

(* =10).

Language Elements 5

When a literal appears in a statement, Symbol produces the
indicated value, stores the value in the literal table, and
assembles the address of that storage location into the state-
ment. The address is assembled as a word address unless the
programmer specifies a byte, halfword, or doubleword
address (see "Addressing Functions" in Chapter 3). Literals
may be used anywhere a storage address value is a valid
argument field entry. However, literals may not be used
in directives that require previously defined symbols.

During an assembly Symbol generates each literal as a
32-bit value on a word boundary in the literal table. The
assembler detects duplicate values and makes only one
entry for them in the table. Symbol appends the literal
table to the end of the assembled program.

Any of the previoysly discussed types of constants except
floating-point long (FL) may be written as literals:

L(1416) integer literal
L(C'BYTE") character string literal
L(X'FOFOQ") hexadecimal literal
L(O'7777") octal literal
L(D'37879") decimal literal

L(FX'78.2E1B10") fixed-point decimal literal

L(FS'-8.935410E-02') floating-point short literal

EXPRESSIONS

An expression is an assembly language element that repre-
sents a value. It consists of a single term or a combination
of terms (multitermed) separated by arithmetic operators.

A single-termed expression may be any valid symbol refer-
ence, a constant, or a literal (symbol references are de-
scribed later in this chapter).

A multitermed expression must be evaluatable; that is, it
must contain only decimal integers, octal or hexadecimal
constants, and previously defined symbol references. It
must not contain literals, forwardreferences, or external ref-
erences except for the special case noted later in this chap-
ter under "Forward References" and "External References".

OPERATORS AND EXPRESSION EVALUATION

A single-termed expression, such as 52or $or AB, takes on
the value of the term involved. A multitermed expression,
such as INDX+4, is reduced to a single value by the
assembler.

The operators that can appear in a Symbol expression are
shown in Table 2.

6 Syntax

Table 2. Symbol Operators

Binding
Operators Strength Function
+ | 2 | LJnory plus
- 2 Unary minus
+ 1 Integer Add (binary)
- 1 Integer Subtract (binary)

In an expression, operations with the higher binding
strength are performed first; those with the same binding
strength are performed left to right.

When an address is use as a term in a multitermed expres-
sion, the arithmetic operation is restricted to the low-order
19 bits.

The assembler distinguishes between the unary operator (-)
and the binary operators in the following manner:

1. An operator preceding an expression may only be a
unary operator, as in =27 or +6.

2. The first operator following a term in a multitermed
expression must be a binary operator:

-27-=ABLE

uhary
binary

unary

If ABLE represents the value 10, the expression wouldbe

equivalent to -27-(-10)) = =27 + 10 = -17. 1f ABLE repre-
sents the value -10, the expression would be equivalent to
-27-(-10)) = -27-10 = -37.

SYNTAX

Assembly language elements can be combined with computer
instructions and assembler directives to form statements that
comprise the source program.

STATEMENTS

A statement is the basic component of an assembly language
source program; it is also called a source statement, a
program statement, or a symbolic line.

Source statements are written on the standard coding form
shown in Figure 1.

Xerox Sigma Symbolic Coding Form

Xerox Data Systems

XEROX

P TH I & pace_ L or L
ROBLEM AL IDENTIFICATION GE
MV 73 80 DATE T SO~ /4
PROGRAMMER VA
LABEL COMMAND ARGUMENT COMMENTS
1 5 10 15 20 25 30 35 137 40 45 50 55 60 65 70 72
e = T T T T [e T T =
ORAN 7@ PRIWL JOTHING,
P I AN 4 LRI AT st e —
*‘vx||. |y.|./‘/v AU SN SN S B | LN A A B S G S RIS | T T T T T T T
o fie rexte el
PRINT FPI| 166N 8 o 24 L 50
A s I e s onia AL B o B S IS B
e ‘5',5,"/,‘,1;,3.1 Lol L e o I — [
DATA rHIle
AT T e e B B M n e ; — T
ST AFE CALL 2 PRINT FET.
LA AlLtg BINT LA e T e
AL L T T T T T o e MR T
END START
e ND LA o T B e e e e oo B L
e 5. e e o o e A L B
e T R T s e B I e e I N
e ——— e S 5 5 L B a2 ML o e B S o
e e T S o e o o o o s B T
T T s o T e e e o e e ——— .
—— e . r T e s e e o L L e B i mma s
T e T T T T o o e e e
e , r ; N T S e AR o o e o o e B I T
e et e e L e e o e N B B
e T e o S i B e o o B B ,
. e N o T B B S B S B A
—r T e S B (ana o L o B B o T
Figure 1. Xerox Sigma Symbolic Coding Form
FIELDS a specified column. The rules for writing free-form

symbolic lines are:

The body of the coding form is divided into four fields:
label, command, argument, and comments. The coding 1.
form is also divided into 80 individual columns. Col-
umns 1 through 72 constitute the active line; columns 73

through 80 are ignored by the assembler except for 2.
listing purposes and may be used for identification and
a sequence number.

3.
The columns on the coding form correspond to those on a 4
standard 80-column card; one line of coding on the form ’
can be punched into one card.

5.

Symbol provides for free=form symbolic lines; that is, it
does not require that each field in a statement begin in

The assembler interprets the fields from left to right:
label, command, argument, comments.

Ablank column terminates any field except the comments
field, which is terminated at column 720on card input or
by a carriage return character on paper tape input.

One or more blanks at the beginning of a line specify
there is no label field entry.

The label field entry, when present, must begin in
column 1.

The command field begins with the first nonblank col-
umn following the label field or in the first nonblank
column following column 1, if the label field is
omitted.

Syntax 7

6. The argument field begins with the first nonblank
column following the command field. An argument
field is designated as blank in either of two ways:

a. Sixteen or more blank columns follow the com-
mand field.

b. The end of the active line {column 72) isencountered.

7. The comments field begins in the first nonblank col -
umn following the argument field or after at least
16 blank columns following the command field,
when the argument field is empty.

ENTRIES

A source statement may consist of one to four enfries
written on a coding sheet in the appropriate fields: a
label field entry, a command field entry, an argument
field entry, and a comments field entry.

A label entry (Example 2) is a symbol that identifies the

statement in which it appears. The label enables a pro-
grammer to refer to a specific statement from other state-
ments within the program.

The label of a statement may have the same configuration
gs an instruction, directive, or intrinsic function without
conflict, since Symbol is able to distinguish through con-
text which usage is intended. However, no two statements
may have the same label; otherwise, an ambiguous refer-
ence would be created. For example, the mnemonic code
for the Load Word command is LW. An instruction may be
written with LW in the label field, without conflicting with
the command LW.

Example 2. Label Field Entry

LABEL COMMAND ARGUMENT
1 5 10 15 20 25 30 35
PVQY'!?IH'TE T T 30 IR B A L
P B B T T T T T T
/'-)‘JI T T ™ ™ T ™
CTBSTQ T T T NI S e B S
T T T T 1 T T
T T T T 1 NI I

The command entry (Example 3) is a mnemonic code repre-
senting a machine instruction or assembler directive speci-
fying the machine operation or assembler function to be
performed. A command entry is required in every active
line. Thus, if a statement line is entirely blank following
the label field or if the command entry is not an accept-
able instruction or directive, the assembler declares the
statement in error, generates a word of all zeros in the ob-
ject program, and flags the statement in the assembly listing.
The mnemonic codes for machine instructions and the assem-
bic- directives recognized by Symbol are listed in Appen-
dixes A and B.

8 Processing of Symbols

Example 3. Command Field Entry

LABEL COMMAND ARGUMENT
1 5 10 15 20 25 30. 35
T AGEE T T T T
L'w' 5; T A B A R B R SR
N
NG T T T T T
- T T RYACERE T ™
)
%?'LPHH" Llw‘\'s'll |‘ ll T T
BETA W8 T T T T T
B‘l"'l" W E ™ T T
rry TS - T — 7
T T i T T ™ ™]
T T T T T T T i

An argument eniry (Example 4) consists of one or more sym-
bols, constants, literals, or expressions separated by commas.
The argument entries for machine instructions usually repre-
sent such things as storace locations, constants, or inter=
mediate values. Argun ents for assembler directives provide
the information needeu by Symbol to perform the desig-
nated operation.

Example 4. Argument Field Entry

COMMAND ARGUMENT
10 15 20 25 30 35 3740

T T R T AR
L|W'A'5' T ﬂleP'Hﬂ‘ A A BN | T T
/7"".-"',,., Bl A .
k‘1'74l ' ‘35‘ ‘ 1 . 1 . i . T _
L[W‘?'[_CPIUNT'I "'l"‘lv vl ,,,l,,
Nep : o BLANK AIRGUMENT
. L ey
T T T A AR M N

A comments entry may consist of any information the user
wishes to record. It is read by the assembler and output as
part of the source image on the assembly listing. Comments
have no effect on the assembly.

COMMENTS LINES

An entire line may be used as a comment by writing an
asterisk in column 1. Any EBCDIC character may be used
in comments. Extensive comments may be written by using
a series of lines, each with an asterisk in column 1.

The assembler reproduces the comment lines on the assembly
listing and counts comment lines in making line number
assignments (see Chapter 6 for a description of output
formats).

PROCESSING OF SYMBOLS

Symbols are used in the label field of a machine instruction
to represent its location in the program. In the argument
field of an instruction, a symbol identifies the location of
an instruction or a data value.

The treatment of symbols appearing in the label or argument
field of an assembler directive varies.

DEFINING SYMBOLS

A symbol becomes "defined" by appearing as a label entry.

"Defined" means that it is assigned a value. The definition,
assigned to the symbol by the assembler, depends on assem-

bly conditions when the symbol is encountered, the contents
of the command field, and the current contents of the exe-
cution location counter.

Any machine instruction can be labeled; the label s as-
signed the current value of the execution location counter.

The EQU and COM directives require a label entry; the
entry is assigned the value of the symbol or constant in
the argument field. A label entry is optional for the fol-
lowing directives: ASECT, CSECT, DATA, DO, GEN,
LOC, ORG, RES, TEXT, and TEXTC. If specified, it is
assigned the current value of the execution location counter.
For all other directives a label entry is ignored.

The first time a symbol is encountered in the label field of
an instruction, or any of the directives mentioned above, it
is placed in the symbol table and assigned a value by the
assembler. The values assigned to labels naming instruc-
tions, storage areas, constants, and control sections repre=
sent the addresses of the leftmost bytesof the storage fields
containing the named items.

Often the programmer will want fo assign values to symbols
rather than having the assembler do it. This may be accom-
plished through use of the EQU directive. A symbol used
‘1 the label field of an EQU directive is assigned the value
specified in the argument field.

Note: The use of labels is a programmer option, and as
many or as few labels as desired may be used.
However, since symbol defining requires assembly
time and storage space, unnecessary labels should
be avoided.

SYMBOL REFERENCES

A symbol used in the argument field of a machine instruc-
tion or directive is called a symbol reference. There are
three types of symbol references.

PREVIOUSLY DEFINED REFERENCES

A reference made to a symbol that has already been de-
fined is a previously defined reference. All such refer-
ences are completely processed by the assembler. Previously
defined references may be used in any machine instruction
or directive.

FORWARD REFERENCES

A reference made to a symbol that has not been defined is

a forward reference. A forward reference must not be used
os a term in a multitermed expression, with one exception.
The exception is that a forward reference may have a

constant addend, so that the reference is of the form:
reference + exp or exp + reference. The term exp must
be either a positive integer value or an expression that
resolves to a positive integer value. Examples of such
usage would be

LW, 4 HERE-2
HERE ;.EQU S
FLAG !EQU 1
IlW,4 FLAG+4+SUM

SUM

It should be noted that the negative of a forward reference
must not be created by such usage, nor may a forward refer-
ence with an addend be used as a literal. For example, if
HERE is a forward reference, the usage L(HERE + 2) is
illegal.

Any computer instruction may use a forward reference, but
only the GOTO, LOCAL, REF, SREF, DEF, GEN, and
DATA directives may use forward references. Other direc-
tives do not permit the use of forward references.

The argument field entries for most directives must be
"evaluatable" expressions; i.e., those that can be evalu-
ated when the assembler encounters them. By definition,
such expressions cannot contain forward references.

EXTERNAL REFERENCES

A reference made to a symbol defined in a program other
than the one in which it is referenced is an external refer-
ence. An external reference must not be used as a term in
a multitermed expression, with one exception. The excep-
tion is that the external reference may have a constant
addend of the same kind and conforming to the same restric-
tions previously explained under "Forward References".

A program that defines external references must declare
them as external by use of the DEF directive. An external
definition is output by the assembler as part of the object
program, for use by the loader.

A program that uses external references must declare them
as such by use of a REF or SREF directive.

A machine instruction containing an external reference is
incompletely assembled. The object code generated for
such references allows the external references and their
associated external definitions to be linked at load time.

After a program has been assembled and stored in memory
to be executed, the loader automatically searches the

Processing of Symbols 9

program library for routines whose labels satisfy any existing
external references. These routines are loaded automat-
ically, and interprogram communication is thus completed.

Any computeér instruction may contain an external refer-
ence; however, external references are not allowed as
directive arguments except for REF, SREF, GEN, DATA,
and END.

CLASSIFICATION OF SYMBOLS
Symbols may be classified as either local or nonlocal.

A local symbol is one that is defined and may be referenced
within a restrictéd program région. The program region is
designated by the LOCAL directive, which also declares
the symbols that are to be local to the region.

A symbol not declared as local by use of the LOCAL direc-
tive is a nonlocal symbol. It may be defined andreferenced
ih any region of a program, including local symbol regions.

The same symbol may be both nonlocal and local, in which
case the nonlocal and local forms identify different program
elements.

SYMBOL TABLE

The valué of each defined symbol is stored in the assem-
bler's symbol fable. Each value has a value type associated
with it, such as relocatable address, integer, external ref-
erence. Some types require additional information. For
example, relocatable addresses, which are entered as
19-bit offsets from the program section base, require the
intrinsic resolution of the symbol (see Chapter 3 for a
discussion of intrinsic resolution).

When the dssembler encounters a symbol in the argument
field, it refers to the symbol table to determine if the sym-
bol has already been defined. If it has, the assembler ob-
tains from the table the value and attributes associated with
the symbol, ahd is able to assemble the appropriate value
in the statement.

If the symbol is not in the table, it is assumed to be a for-
ward reference. Symbol enters the symbol in the table,
but does not assign it a value. When the symbol is defined
later in the program, Symbol assigns it a value and desig=
nates the appropriate attributes. If any undefined symbols
remain in the symbol table after assembly is completed,
Symbol considers them to be unknown and produces an
appropriate error message.

ABSOLUTE AND RELOCATABLE VALUES

The value of a symbol or expression may be absolute or
relocatable. An absolute value, which is assigned at as-
sembly time, is the same value that will be used by the pro-
gram at execution time. A relocatable value, on the other
haid, may be altered by the loader at execution time.

10 Processing of Symbols

SYMBOL VALUES

A symbol is assigned an absolute value by one of the
following methods:

1. By equating the symbol to an' absolute numeric
quantity:

SUM EQU 2

SUM is assigned the absolute value 2.

2. By equating the symbol to an absolute symbol:
A EQU -10
ANSWER EQU A

ANSWER is assigried the absolute value -10.

3. By equating the symbol to the difference of two
relocatable symbols:

TAB DATA 1,2,3
ENDTAB RES 0
LTAB EQU ENDTAB-TAB

The value of an absolute symbol does not change, even if
it is part of a relocatable program (a program that can be
executed anywhere in memory).

A symbol has a relocatable value unless declared absolute
as described above. The value of a relocatable symbol may
be altered by the loader when the symbol is a part of a
relocatable program.

EXPRESSION VALUES

An absolute expression may consist of either a single
absolute term or a combination of absolute terms. An ab-
solute term is a hexadecimal, octal, or decimal integer.
Note that D, C, FX, FS, and FL constant types are not
permitted in expressions.

A relocatable expression may consist of either a single
relocatable term or a combination of relocatable terms.

The mode of an expression combining absolute terms with
relocatable terms is determined as shown in Example 5.

When the assembler evaluates expression, it determines
whether the expression value is relocatable or absolute.
Each term in the expression has a relocatable or absolute
status value: 1 =relocatable; 0 = absolute. The assembler
scans the expression from left to right combining status

values according to the operators in the expression. Symbol
allows only two operators in expressions: +and -. Af no
time during the scan may the accumulation of status values
exceed 1.

The resulting status value at the end of the scan indicates
whether the expression is relocatable or absolute. An abso-
lute expression is unaffected by the relocation of a program
ot execution time. A relocatable expression, however, may
be altered by the loader at execution time.

Example 5. Expressions Using + and - Operators

Assume R1, R2, and R3 are relocatable terms and Al

and A2 are absolute terms.

Expression: R1+A1

Status: 10 Legal, relocatable

Accumulation: 1

Expression: R1-R2-R3

Status: 111 Illegal, diagnostic
error

Accumulation: 0 -1

Expression:

Status:

Accumulation:

Expression:

Status:

Accumulation:

Expression:

Status:

Accumulation:

Expression:
Status:

Accumulation

Expression:

Status:

Accumulation:

R1-R2+A1
110
0 0

R1-R2+R3-A1-+A2

T 11
0 1
R1+R2
11
2
R1+R2-R3
1T 11
2 1
Al+A2
0 0
0

0 O

Legal, absolute

Legal, relocatable

Illegal, diagnostic

error

Illegal, diagnostic

error

Legal, absolute

Processing of Symbols

1

3. ADDRESSING

Sigma computer addréssing techniques require a register
designiation and dan argument address which may specify
indexing and/or indirect addressing. Theé programmer may
write addressés in symbolic form, and the assembler will
convert them fo the propet equivalents.

RELATIVE ADDRESSING

Relative addressing is the technique of addressing instruc-
tions and storage aréas by designating their locations in
relation fo other locations. This is accomplished by using
symbolic rather than numeric designations for addresses.
An instruction may beé givén a symbolic label suchas LOOP,
and the programmer can refer to that ihsfruction anywhere
in his program by using the symbol LOOP in the argument
field of anothér instruction. To reference the instruction
following LOOP, he cdn write LOOP+1; similarly, to
reference the instruction preéceding LOOP, he can write
LOOP-1.

An address may be given as relative to the location of the
current instruction even though the insfruction being ref-
erencéd is not labeled. Thé execution location counter,
described later in this chapter, always indicates the loca-
ton of the current instruction and may be referenced by
the symbol $. Thus, the construct $+8 specifies an ad-
dress eight units greater than the current address, and the
construct S-4 specifies an address four units less than
the current address.

ADDRESSING FUNCTIONS
Intrinsic functions are functioris built into the assembler.
Certain of these furictions coricerned with address resolu-
tion are discussed here. Literals, another intrinsic function,

were discussed in Chapter 2; other intrinsic functions are
explained in Chapter 5.

Intrinsic functions, including those concerned with address
resolution, may or may not require arguments. When an
argument is required for an intrinsic function, it is always
enclosed in parentheses.

A symbol whose value is an address has an intrinsic address
resolution assigned at the time the symbol is defined.
Usually this intrinsic resolution is the resolution currently
applicable to the execution location counter. The address-
ing functions BA, HA, WA, and DA (explained later) al-
fow the programmer fo specify explicitly an intrinsic address
resolution ofher than fhe one currently in effect.

Certain address resolution functions are applied uncondition-
ally to an address field after it is evaluated. The choice
of functions depends on the instruction involved. For
instructions that require values rather than addresses (e.g.,
11, MI, DATA), no final addressing function is applied.
For instructions that require word addresses (e.g., LW, STW,

12 Addressirg

LB, STB, LH, LD), word address resolution is applied. Thus,
the assembler evaluates LW,3 ADDREXP as if it were LW,3
WA (ADDREXP). Similarly, instructions that require byte
addressing (e.g., MBS) cause a final byte addressing reso-
lution to be applied to the address field.

More information on address resolution is given after the
explanation of intrinsic addressing functions, which
follows.

§,88 Location Counters

The symbols $ (current v~lue of execution location counter)
and $$ (current value >f load location counter) indicate
that the current value of the appropriate location counter
is to be generated for the field in which the symbol
appears (see Example 6).

The current address resolution of the counter is also ap-

plied to the generated field. This resolution may be
changed by the use of an addressing function.

Example 6. S, $S Functions

A EQU S Equate A to the current
value of the execution
location counter.

z EQU $$ Equate Z to the current

value of the load loca-
cation counter.

Branch to the location
specified by the current
execution location counter
+2 if the condition code
. and value 3 compare 1's
anyplace.

TEST BCS,3 $+2

BA Byte Address

The byte address function (Example 7) has the format

BA (address expression)

where "BA" identifies the function, and "address expres-
sion" is the symbol or expression that is to have byte ad-
dress resolution when assembled. If "address expression”
is a constant, the value returned is the constant itself.

Example 7. BA Function

The value 48 is stored
in the literal table
and its location is as-
sembled into thisargu-
ment field as a byte
address.

z 1,3 BAL(L48))

The current execution
location counter ad-
dress is evaluated as
a byte address for this
statement.

AA L1, 5 BA(S)

HA Holfword Address

The halfword address function (Exaraple 8) has the format
HA(address expression)

where "HA" identifies the function, and "address expres-

sion" is the symbol or expression that is to have halfword

address resolution. If "address expression" is a constant,
the value returned is the constant itself.

Example 8. HA Function

Declares control sec~
tion Z. Both location
counters are initialized
to zero. Zis impli-
citly definedasaword
resolution address.

Z CSECT

Q EQU HA(Z+4) Equates Q to a half-
word address of Z+4

(words).

WA Word Address
The word address function (Example 9) has the format
WA (address expression)

where "WA" identifies the function, and "oaddress ex-
pression" is the symbol or expression that is to have
word address resolution when assembled. If "address
expression’ is a constant, the value returned is the con-
stant itself.

Example 9. WA Function

A ASECT Declares absolute sec-
tion A and sets its loca-
tion counters to zero.

Lw,3 Z1

Assembles instruction fo
be stored inlocation 0.

Assigns the symbol B the
valve 1, with word ad-
dress resolution.

C EQU BA(B) Equates C to the value of
B with byte address

resolution.

F EQU WA(C) Equates F to the value of
C, with word address

resolution.

DA Doubleword Address

The doubleword address function (Example 10)has the format
DA (address expression)

where "DA" identifies the function, and "address expres-

sion" is the symbol or expression that is to have double-

word address resolution when assembled. If "address ex-

pression" is a constant, the value returned is the constant
itself.

Example 10. DA Function

LI, 5 DA (L(ALPHA)) The symbol ALPHA is
stored in the literal table
and its focation is assem-
bled into this statement

as a doubleword address.

ADDRESS RESOLUTION

To the assembler an address represents an offset from the
beginning of the program section in which it is defined.

Consequently, the assembler maintains in its symbol table
not only the offset value, but an indicator that specifies
whether the offset value represents bytes, words, half-
words, or doublewords. This indicator is called the "ad-
dress resolution".

Address Resolution 13

Address resolution is determined at the time a symbolic
address is defined, in one of two ways:

1. Explicitly, by specifying an addressing function.

2. Implicitly, by using the address resolution of the exe-
cution location counter. (The resolution of the
execution location counter is set by the ORG or LOC
directives. If neither is specified, the address
resolution is werd.)

The resolution of a symbolic address affects the arithmetic
performed on it. If A is the address of the leftmost byte of
the fifth word, defined with word resolution, then the
expression A + 1 has the value 6 (5 words + 1 word). If A
is defined with byte resolution, then the same expression
has the value 21 (20 bytes + 1 byte). See Example 11.

Forward and external referenceswith addends are considered
to be of word resolution when used without a resolution
function in a generative statement or in an expression.
Thus, o forward or external reference of the form

reference + 2
is implicitly

WA (reference + 2)

Example 11, Address Resolution

Symbol restricts the number of nested resolution functions
and addends that may be applied to a forward or external
reference with an addend. Only one such change of
address resolution may be made. For example, the fol-
lowing usage of a forward reference is permissible:

BA(2+WA(reference))

while the following usage cannot be processed by Symbol
and will be flagged as an error:

WA (BA(2 + WA(reference)))

Similarly, once a forward or external reference has been
given an addend followed by a change of resolution, it may
not be given another addend. For example, the following
forward reference usar~ will also be flagged as an error:

(BA(2 + WA(reference)) + 1

LOCATION COUNTERS

A location counter is a memory cell the assembler uses to
record the storage location it assigned last and, thus, what
location it should assign next. Each program has two
location counters associated with it during assembly: the

Sets value of location counters to
zero with word resolution.

Gener?:fed

Location Code

CSECT
00000 ORG
00000 FFFB GEN, 16
00000 2 0004 GEN, 16
00001 0000 GEN, 16
00001 2 0002 GEN, 16
00002 0001 GEN, 16
00002 2 ORG, 1
00002 2 FFFF GEN, 16
00003 000A GEN, 16
00003 2 000B GEN, 16
00004 0002 GEN, 16
00004 2 0002 GEN, 16
00005 0008 - GEN, 16
00005 2 0003 GEN, 16
00006 000C GEN, 16
00006 2 000D GEN, 16

-5 Defines A as 0 with word resolution.
4 Defines B as 0 with word resolution.
BA(A) Generates 0 with byte resolution.
BA(B) Generates 2 with byte resolution.
HA(B) Generates 1 with halfwordresolution.
5 Sets value of location counters to 10
with byte resolution.
-1 Defines F as 10 resolution.
F Generates 10with byte resolution.
F+1 Generates 11 with byte resolution.
WA(F) Generates 2 with word resolution.
WA(F+1) Generates 2 with word resolution.
BA(WA(F+1)) Generates 8 with byte resolution.
WA (F)+1 Generates 3 with word resolution.
BA(WA(F)+1) Generates 12 with byte resolution.
BA(WA(F)+1)+1 Generates 13 with byte resolution.

14 Location Counters

load location counter (referenced symbolically as $$) and
the execution location counter (referenced symbolically

as $). Theload location counter contains a location value
relative to the origin of the source program. The execu-
tion location counter contains a location value relative to
the source program's execution base.

Essentially, the load location counter provides information
to the loader that enables it to load a program or sub-
program into a desired area of memory. The execution
location counter, on the other hand, is used by the assem=
bler to derive the addresses for the instructions being as-
sembled. To express it another way, the executionlocation
counter is used in computing the locations and addresses
within the program, and the load location counter is used in
computing the storage locations where the program will be
loaded prior to execution.

In the "normal " case both counters are stepped together as
each instruction is assembled, and both contain the same
location value. However, the ORG and LOC directives
make it possible to set the two counters to different initial
values to handle a variety of programming situations. The
load location counter is a facility that enables systems pro-
grammers to assemble a program that must be executed in
a certain area of core memory, load it into a different
area of core, and then, when the program is to be executed,
move it to the proper area of memory without altering any
addresses. For example, assume that a program provides a
choice of four different output routines: one each for paper
tape, magnetic tape, punched cards, or line printer. In
order to execute properly, the program must be stored in
core as follows:

variable W
to be used for
| data storage dur-
ing program
execution
2FFF ‘
output routine
1FFF
main program
0000

Each of the four output routines would be assembled
with the same initial execution location counter value
of 1FFF but with different load location counter values.
At run time this would enable all the routines to be
loaded as shown below.

variable W
line printer routine
5FFF to be used for data
punched card routine * storage during pro-
4FFF gram execution
paper tape routine
3FFF
magnetic tape routine
2FFF .
execution area for
IFFF] output routine
main program
0000

When the main program has determined which output rou-
tine is to be used, during program execuiion, it moves
the routine to the execution area. No address modifi-
cation to the routine is required since all routines were
originally assembled to be executed in that area. If the
punched card output routine were selected, storage would
appear as: '

variable \

line printer routine data storage

5FFF

punched card routine
AFFF

paper fape routine
3FFF

magnetic tape routine
2FFF ~
punched card routine

execution area for
output routine

1FFF

main program

0000

The user should not assume from this example that the exe-
cution location counter must be controlled in the manner
indicated in order for a program to be relocated. By prop-
erly controlling the loader and furnishing it with a "reloca-
tion bias", any Symbol program, unless the programmer
specifies otherwise, can be relocated into a memory area
different from the one for which it was assembled. Most
relocatable programs are assembled relative to location zero.
To assemble a program relative to some other location, the
programmer should use an ORG directive to designate the
program origin. This directive sets bothlocation counters to
the same value. More information on program sectioning
and relocatability is given at the end of this chapter.

Location Counters 15

Each location counter is a 19-bit value that the assembler
uses to construct byte, halfword, word, and doubleword
addresses:

G 1 2 al4 5 6 718 9 101 T2 13.14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}

——doubleword

word

- halfword —————

byte

Thus, if a location counter contained the value

OOOOOOOOOOIlOOlOIOll

0 1 2 314 5 6 7|8 9 o TI112113 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3

it could be evaluated as follows:

Hexadecimal

Resolution Value
Byte 193
Hal fword c9
Word 64
Doubleword 32

The address resolution option of the ORG and LOC direc-
tives allows the programmer to specify the intrinsic resolu~-
tion of the location counters. Word resolution is used as
the intrinsic resolution if no specification is given. Address
functions, as previously explained, are provided to over-
ride this resolution.

SETTING THE LOCATION COUNTERS

At the beginning of an assembly, Symbol automatically sefs
the value of both location counters to zero. The user can
reset the location values for these counters during an assem-
bly with the ORG and LOC directives. The ORG directive
sets the value of both location counters. The LOC directive
sets the value of only the execution location counter.

ORG Set Program Origin

The ORG directive (Examples 12and 13) sets both location
counters to the location specified. Thisdirective has the form

label command argument
[lubel] | ORG[, "] location
where
label may be any valid symbol. Use of a label is

optional. When present, it is definedas the value

16 Location Counters

"location" and is associated with the first byte
of storage following the ORG directive.

n may be a constant, symbol, or expression whose
valve is 1, 2, 3, 4, or 8, specifying the address
resol ution for both counters as byte, halfword,
word, or doubleword, respectively. If nis
omitted, word resolution is assumed.

location may be relocatable or an evaluatable
expression resulting in a positive integer value.

The address resolution option of ORG may be used to change
the intrinsic resolution specification to byte, halfword, or
doubleword resolution. Thereafter, whenever intrinsic reso-
lution is applicable, it will be that designated by the most
recently encountered ORG directive. For example, when-
ever $ or $$ are encountered, the values they represent
are expressed accor: ing fo the currently applicable in-
trinsic resolution.

LOC Set Program Execution

The LOC directive (Example 14) sets the execution locaticn
counter ($) to the location specified. It has the form

label command argument
[lobel} | Loc [,n]) location
where
label is any valid symbol. Use of a label is

optional. When present, if is defined as the value
of "location" and is associated with the first byte
of storace following the LOC directive.

n may be a constant, symbol, or expression whose
value is 1, 2, 4, or 8, specifying the address reso-
lution for the execution location counter as byte,
halfword, word, or doubleword, respectively. If
n is omitted, word resolution is assumed.

location may be relocatable or an evaluatable
expression resuiting in a positive integer value.

Except that it sets only the execution location counter, the
LOC directive is the same as ORG.

BEOUND

Advance Location Counters to Boundary

The BOUND directive (Example 15) advances both location
counters, if necessary, so that the execution locationcoun-
ter is a byte multiple of the boundary designated. The form
of this directive is

label command

BOUND

argument

boundary

where "boundary" may be any evaluatable expression re-
sulting in a positive integer value that is a power of 2.
Halfword addresses are multiples of two bytes, fullword ad-
dresses are multiples of four bytes, and doubleword addressgg
are multiples of eight bytes. ’

Example 12. ORG Directive

AA ORG 8

LW, 2 INDEX

This directive sets the location counters to 8 and assigns that location to the
label AA.

This instruction is assembled to be loaded into the location defined as AA.
Thus, the effect is the same as if the ORG directive had not been labeled and

the label AA had been written with the LW instruction (i.e., AA LW,2 INDEX).

Example 13. ORG Directive

4 CSECT

ORG Z+4
A LW, 4 ANY
MBS, 0 B

LI, 4 BA(ANY)

Designates section Z and sefs the location counters to zero.

Sets the location counters to Z + 4 with word resolution.
Assembles ANY with word resolution, and defines A with word resolution.
Forces a byte address. The type of address required by the command overrides

the intrinsic resolution of the symbol.

Assembles the symbol ANY as a byte address.

Exomple 14. LOC Directive

PDQ ASECT

ORG 100
LOC 1000

original origin of the program.

Sets the execution location counter and load location counter to 100.

Sets the execution location counter to 1000. The load location counter
remains at 100.

Subsequent instructions will be assembled so that the object program can be loaded anywhere in core relative to the
For example, a relocation bias of 500 will cause the loader to load the program at
600 (500 + 100). However, the program will execute properly only after it has been moved to location 1000.

Example 15. BOUND Directive

BOUND 8

Sets the execution location counter to the next higher multiple of 8 if it
is not already at such a value.

For instance, the value of the execution location counter for the current section might be 3 words (12 bytes).
This directive would advance the counter to 4 (16 bytes), which would allow word and doubleword, as well as
byte and halfword, addressing.

Location Counters

17

When the BOUND. directive is processed, the execution
location counter is advanced to a byte multiple of the
boundary designated and then the load location counter is
advanced the same number of bytes. When the BOUND
directive results in the location counters being advanced,
zeros are generated in the byte positions skipped.

RES Reserve an Area

The RES directive (Example 16) enables the user to reserve
an area of core memory.

- label command argument
‘ [abel] RES(, n] v
where
label is any valid symbol. Use of a label is op-

tional. When present, the label is defined as
the current value of the execution location coun-
ter and identifies the first byte of the reserved
area.

n is an evaluatable expression designating the size
in bytes of the units to be reserved. The value of
n must be a positive integer. Use of n is optional;
if omitted, its value is assumed to be four bytes.

u is an evaluatable expression designating the num-
ber of units to be reserved. The value of u may be
a positive or negative integer.
When Symbol encounters a RES directive, it modifies both

location counters by the specified number of units.

Example 16. RES Directive

ORG 100 Sets location countersto 100,

A RES, 4 10 Defines symbol A as location
100 and advances the laca-
tion counters by 40 bytes
(10 words) changing them

to 110.

LW, 4 VALUE Assigns this instruction the
current value of the location
counters; i.e., 110.

PROGRAM SECTIONS

A Symbol object program may consist of one or two pro-
gram sections: one relocatable and/or one absolute sec-
tion. Sectioning is the arbitrary grouping of areas of a

18 Program Sections

program into logical divisions, such as specifying one
section for the main program and one for subroutines
or data.

It is usually desirable to assemble a symbolic program sec-
tion without allocating it to a particular memory area of
starting location. When a program section can be exe-
cuted independently of its origin, that is, independently
of where it is physically located within the computer, it
is called a relocatable program section. Relocatable pro-
gram sections are frequently assembled relative to location
zero; thei is, they are assembled as if the first instruction
would be stored at location zero. Subsequent instructions
are assembled relative to the beginning location of the
program.

When a relocatable section is loaded into core to be exe-
cuted, the user mar .pecify the beginning location of the
area where the sec .on is to be stored, and an appropriate
value (called a relocation bias) is added to the address por-
tion of each relocatable instruction in the program. For
example, a relocatable section assembled relative to loca-
tion zero may be loaded beginning at location 1000; then,
the value 1000 is the relocation bias for that section. Te
illustrate, assume a section is assembled relative to zero:

Location Instruction
100 B ALPHA Branch to location
. ALPHA.
120 LW,4 BETA Load register 4 with

contents of BETA.

When these instructions are assembled, the branch in-
struction in location 100 will specify a transfer to lo-
cation 120. If this program is loaded with a relocation
bias of 1500, the branch instruction would be stored at
1600 and would specify a transfer to location 1620,

Programs are generally relocatable; however, provision is
made for an absolute or nonrelocatable section which is
useful for such purposes as storing instructions to be executed
in the event of an interrupt.

ASECT Absolute Section
CSECT Control Section

ASECT and CSECT are the two directives provided for pro-
gram sectioning. ASECT declares an absolute control
section so that generative statements will be assembled for
loading into absolute locations. The location counters are
set to absolute zero. CSECT declares a relocatable control
section so that generative statements will be assembled for
loading into relocatable locations. The location countery
are set to relocatable zero.

The program section directives have the form

label command argument
[label] | ASECT
[iabel] CSECT [value]

where "label" is the name by which the section is identi-
fied. For both ASECT and CSECT a label is optional, and
any valid symbol may be used. The "label" must not be
an external reference.

The "value", if specified, must be between 0 and 3. This

value indicates the type of memory protectionto be associ-
ated with the control section. If "value" is omitted, zero
is assumed.

Once a program section has been specified, it is effective
until another is specified. If a program section is not
specified when the assembly begins, Symbol arbitrarily
designates an unlabeled, relocatable section and assembles
the progrom accordingly.

At the time a program section (Examples 17 and 18) is origi-
nally declared, both location counters are set to zero and
their address resolution specifications are word addressing.
The address value for either or both of the counters may be
altered by an ORG or LOC directive. Thus, ASECT and
CSECT directives are often followed immediately by an
ORG and/or LOC directive to specify the location of the
first byte of the section (see Examples 13 and 14).

Example 17. Program Sectioning

INTERPTI

ASECT

This statement indicates that subsequent instructions
are to be assembled with absolute addresses. The
section is identified as INTERPTI.
tive should follow the ASECT statement to designate
the absolute address to which the location counter
is set if it is to be a value other than zero.

An ORG direc-

Example 18.

Program Sectioning

TEST CSECT

LAST

NEW ASECT

ORG LAST

Declares a relocatable section
identified as TEST.

Instructions assembled as part
of section TEST.

Last instruction in section TEST.

Declares a different section,
identified as NEW and assem-
bled with absolute addresses.

Instructions assembled as part
of section NEW.

Resumes assembling section TEST.

Program Sections

19

4. INSTRUCTIONS

Sigma computer instructions (see Example 19) may be written
in symbolic code and combined with other assembly lan-
guage elements to form symbolic instruction statements.

The four fields of a symbolic instruction statement are:

Field

label

command

argument

comments

Contents

Any valid symbol. Use of a label entry is
optional; when present, the label symbol
may also appear in the argument field of
other instructions and directives.

Any mnemonic operation code listed in
Appendix B. The entry may consist of
several subfields, the first of which is
always the operation mnemonic code. The
subsequent subfields may be a register
expression, a count expression, or a value
expression, depending on the requirements
of the particular instruction.

One or more subfields such as an address
expression, an indirect addressing
designator, or a displacement expression,
depending on the requirements of the
specific instruction.

Any remark explaining the specific purpose
of the statement of the overall function of
the program,

Machine language instructions are automatically aligned
on word boundaries by the assembler. The address expres-
sions in the argument fields of these instructions are assem-
bled according to the dictates of the specific instruction
and the dictates of any addressing functions in the argument.
(See Example 13 in Chapter 3.)

Appendix B contains a summary of machine language in-
struction mnemonics specifying the requirements of each

20 Instructions

field.

The Xerox Sigma Computer Reference Manuals
contain complete descriptions of these instructions.

Example 19. Sigma 5-7 Instructions

fabel

command

argument

comments

L1

L2

L3

L4

L5

L6

LW,4

Lw,4

LW,4

LE3

AW, 12

HOLD

HOLD, 2

*HOLD, 2

X'F3E'

L(32)

LOOP

Load Word from loca-
tion HOLD into reg-
ister 4.

Indexed Load Word in-
struction using register

" 2 as an index register.

A Load Word instruc-
tion that specifies
both indexing and
indirect addressing.

Load the hexadecima!
value F3E from the
argument field info
register 3.

Add the decimal value
32 to the contents of
register 12.

Branch uncondition-
ally to location
LOOP.

Although the general registers and index registers are
specified only by digits in these examples, they may be
arithmetic expressions whose values are 0-15 for gen-

eral registers and 0-7 for index registers.

They also

may be symbols that have been assigned values within
that range (i.e., X1 EQUI).

5. SYMBOL DIRECTIVES

A directive is a command to the assembler that can be
combined with other language elements to form statements.
Directive statements, like instruction statements, have four
fields: label, command, argument, and comments.

An enfry in the label field is required for two directives:
EQU and COM. EQU equates the symbol in the label
field to the value of the expression in the argument field.
The label field entry for COM identifies the command that
COM generates.

Optional labels for the directives ORG and LOC are
defined as the value to which the execution location coun-
ter is set by the directive.

If any of the directives DATA, GEN, RES, TEXT, or TEXTC
are labeled, the label is assigned the current value of the
execution location counter and identifies the first word of
the area generated or specified by the directive. These

directives also alter both location counters, according to

the contents of the argument field.

Labels for the directives ASECT, CSECT, and DOT identify
the first word of the area affected by the directives. These
directives are nongenerative and do not alter the location
counters.

For the directives BOUND, DEF, END, GOTO, LOCAL,
PAGE, REF, SREF, and SYSTEM, a label field entry is
ignored. The symbol in the label field is not defined, and,
therefore, may not be referenced unless it is the target
label in a GOTO search.

The command field entry is the directive itself. For some
directives this field may consist of two subfields (e.g.,
GOTO k), in which case the directive must be in the
first subfield, followed by the other entry.

Argument field entries vary and are defined in the dis-
cussion of each directive.

A comments field entry is optional.
The Symbol assembly language includes these directives:

Assembly Control

SYSTEM ORG' ASECT'
END Loc! csecT
DOI BOUND'

GOTO RES'

"Discussed in Chapter 3, "Addressing".

Symbol Manipulation

LOCAL REF
-EQU SREF
DEF

Data Generation Listing Control

GEN TEXT PAGE
COM TEXTC
DATA

In the formats that follow, brackets indicate optional
items.

ASSEMBLY CONTROL
SYSTEM Call System

SYSTEM directs the assembler to define the subset of com-
puter instructions that are to be valid during this portion of
the assembly. This directive has the form

label command argument

SYSTEM name

where "name" identifies the instruction set, and must be
one of the following:

Nome Instruction Sef

SIG7 Basic Sigma 7.

SIG7F Sigma 7 with Floating-Point Option.

SIG7D Sigma 7 with Decimal Option.

SIG7P Sigma 7 with Privileged Instructions.

SIG7FD Sigma 7 with Floating-Point and Deci-
mal Option.

SIG7FP Sigma 7 with Floating=Point Option

and Privileged Instructions.

SIG7DP Sigma 7 with Decimal Option and
Privileged Instructions.
SIG7FDP Sigma 7 with Floating-Point, Decimal

Option, and Privileged Instructions.

Symbol Directives 21

Name Instruction Set

S1Gé6 Basic Sigma 6 (decimal instructions
are included).

SIG6F Sigma 6 with Floating-Point Option.
SIG6P Siéma 6 with Privileged Instructions.
SIG6FP Sigma 6 with Floating=Point Option
and Privileged Instructions.

SIGS Basic Sigma 5.

SIG5F Sigma 5 with Floating-Point Option.
SIG5P Sigma 5 with Privileged Instructions.
SIG5FP Sigma 5 with Floating=Point Option

and Privileged Instructions.

None of the instruction sets omits any of the intrinsic com-
mands or functions. Symbol assumes a defaultspecification
of SIG7FDP when SYSTEM is not specified.

END End Assembly

The END directive (Example 20) terminates the assembly of
the source program. It has the form

label command argument

END [e)(p}

A label field entry is ignored unless it is the target label
of a GOTO search. The optional expression in the argu-
ment field designates a location to be transferred to after
the program has been loaded. Normally, that location
contains the first machine language instruction in the
program. The expression may be an externally defined
symbol (explained later in DEF and REF), in which case the
location represented by the symbol exists in a separately
assembled program.

As explained later under GOTO, the END directive is
processed even when it appears within the range of a

GOTO search.

Example 20. END Directive

SYSTEM SIG7
CONTROL CSECT
 START LW, 5 TEST

END START

22 Assembly Control

pol Iteration Control

The DO1 directive (Example 21) defines the beginning of a
single statement assemblly iteration loop. It has the form

label command argument
[label] | DO exp
where
label is any valid fabel. Use of a label isoptional.

When present, it is defined as the current value
of the execution location counter and identifies
the first byte generated as a result of the DOI

iteration.

exp is an evaluatable expression resulting in a
positive intege » that represents the number of times
the line immediately following is to be assembled.
There is no limit to the number of fimes the line
may be assembled.

If the expression in the DO directive is not evaluatable,
Symbol produces an error notification, and processes the
DO1 directive as if the expression had been evaluated
as zero.

Example 21. DO1 Directive

The statements
DO1 3
AW, 4 C

at assembly time would generate in-line machine code
equivalent to the following lines:

C
AW, 4 C
, 4 C
GOTO Conditional Branch

The GOTO directive (Example 22) enables the user to con-
ditionally alter the sequence in which statements are as-
sembled. This directive has the form

label command argument
GOTO[, K] label [, .. ., label,]
where
k is an absolute, evaluatable expression whose value
refers to the kth label in the argument field. If k
is omitted, 1 is assumed.
Iabeli are forward references.

AGOTO statement is processed at the time it is encountered
during the assembly. Symbol evaluates the expression k
and resumes assembly at the line that contains a label
corresponding to thekth label in the GOTO argument field.
The labels must refer to lines that follow the GOTO direc-
tive. If the value of k does not lie between 1 and n, Sym-
bol resumes assembly at the line immediately following the
GOTO directive. An error message is generated if k is
greater than n.

Although a label on BOUND, DEF, END, GOTO, LOCAL,
PAGE, REF, SREF, and SYSTEMis normally ignored by the

assembler, it will be recongnized if it is the target label of
a GOTO search.

While Symbol is searching for the statement whose label
corresponds to the kth label, it operates in a skipping mode
during which it ignores all machine language instructions

and directives except END and LOCAL. Skipped state-

ments are produced on the assembly listing in symbolicform,
preceded by *S*.

If Symbol encounters the END directive before it finds the
target label of a GOTO search or if it encounters a LOCAL
directive while searching for a local label, it produces an
error notification and terminates the assembly.

Example 22. GOTO Directive

A EQU 2

GOTO, A+2 B,C,D,E,F,G

G

Since the expression A +2 has the value 4, Symbol
locates the fourth label in the argument field and re-
sumes assembly at the statement labeled E.

SYMBOL MANIPULATION

LOCAL Declare Local Symbols

As mentioned in Chapter 2, most symbols in a program are
"nonlocal " symbols becuase they occur within an implicit
nonlocal region. The implicit nonlocal symbol region in a

program can be terminated and a new region begun by the
LOCAL directive, which has the form

label command argument

LOCAL Emmel, nameo, ..., namen]

where the name; are symbols that are to be local to the cur-
rent region. Local symbols are syntactically the same as
nonlocal symbols. The argument field may be blank, in
which case the LOCAL directive (see Example 23) termi-
nates the current local symbol region without declaring

any new local symbols.

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search.

Any symbols that do not appear in the argument field of
this directive retain their original meaning. That is, within
a local symbol region only the symbols declared in the
LOCAL directive are unique to that region (see Examples 24,
25, and 26).

The local symbol region begins with the first statement
(other than comments or another LOCAL) following the
LOCAL directive and is terminated by a subsequent use
of the LOCAL directive.

Example 23. LOCAL Directive

LOCAL

A,B,C
LOCAL R,S,T,U
LOCAL X,Y,Z

*COMMENT

START EQU S
LOCAL

The three LOCAL directives inform the assembler that
the symbols A, B, C, R,S, T, U, X, Y, and Z are to
be local to the region beginning with the line START.
The final LOCAL directive terminates the local sym-
bol region without declaring any new local symbols.

Example 24. LOCAL Directive
SYSTEM SIG7

A CSECT
START LW,5 TEST

LOCAL TEST

Declares a local symbol

region where TEST is local

and all others are nonlocal.
LW, 5 TEST This TEST does not have

the same value as in the
statement labeled START.

Symbol Manipulation 23

New A, not the same
as A above.

Legal, since this is
the local A.

Defines B as the
decimal value 89.

Terminates current
local symbol region
and initiates a new
region.

Z is equated to the

hexadecimal value E1.

End current local sym-
bol region and begin

a new one where only

A, B, and X are local.

LOCAL A,B,X

This has the same

value as the Z that ap-
peared in statement

X prior to the first
LOCAL directive.

New definition of X,
different from either
of the Xs that ap-
peared before.

X EQU N

EQU Equate Symbols

The EQU directive (Example 27) enables the user to define

a symbol by assigning fo it the attributes of the expressionin

the argument field. This directive has the form

Example 25. LOCAL Directive
A EQU X'ET
LOCAL A
A EQU 89
B EQU A
LOCAL Z
VA EQU A
Exomple 26. LOCAL Directive
ALPHA ASECT
ORG 100
s EQU T
X EQU Z
LOCAL XY, Z
Y EQU Z
LW, 2 T

24 Symbol Manipulation

T and Z must be pre-
viously defined.

Begin a local symbol
region where X, Y,
and Z are local and

all others are nonlocal.

This Z does not have
the same value as the
one in the EQU state~
ment above.

Same T as above, i.e.,
a nonlocal symbol.

label command argument
labe! EQU exp
where
label is a valid symbol.

exp is an evaluatable expression whose value is
to be associated with "label". The mode (ab-
solute or relocatable) of "exp' isassigned to label.

When EQU is processed by Symbol, "label " is defined as
the value of "exp". For example, the statement

VALUE EQU 8+5

assigns the absolute value 13 to VALUE, and
ALPHA EQU $-10

assigns the relocatable value S - 10 fo ALPHA.

A symbol defined with an EQU cannot be redefined:

A EQU X'F! Legal

A EQu O'2
been equated to a value.

A symbol appearing in o REF directive (explained belc=
cannot be used in the argument field of an EQU directix

lllegal because Ahasalready

because the value of such a symbol is not available to
the assembler: it is contained (defined) in some other,
separately assembled program

Example 27. EQU Directive

A EQU 10 A =10
B EQU A+4 B =14
LW, A DELTA Loads the contents of
location DELTA into
register 10.

DEF Declare External Definitions

The DEF directive (Example 28) declares which symbols
defined in this assembly may be referenced by other,
separately assembled programs. The form of thisdirective is

label command argument

DEF symboll L symbolz, s symbo|n]

where "symbol " may be any symbolic labels defined within
the current program.

A label field entry is ignored unless it is the target label of
a GOTO search.

DEF -declared symbols can be used for symbolic program
linkage between two or more programs. Such symbols pro-
vide access to a program from another program; "access"
may be a transfer of control via a branch instruction, or
some reference to data storage.

Symbol requires that DEF directives precede any state-
ments that cause code to be generated; this includes all
machine-language instructions and the directives BOUND,
DATA, DO1, END, GEN, TEXT, and TEXTC. Further-
more, all DEF directives must precede any REF and /or
SREF directives.

Example 28. DEF Directive

DEF TAN,SUM,SORT

This statement identifies the labels TAN, SUM, and
SORT as symbols that may be referenced by other programs.

REF Declare External Reference

The REF directive (Examples 29 and 30) declares which
symbols referred to in this assembly are defined in some

other, separately assembled program. The directive has
the form

iabel command argument

REF symboly L symboly, ..., symbol 7

where "symbol;" may be any labels that are to be satisfied
at load time by other programs.

A label field entry is ignored unless it is the target label
of a GOTO search.

Symbols declared with REF directives can be used for sym-
bolic program linkage between two or more programs. At
load time these labels must be satisfied by corresponding
external definitions (DEFs) in another program.

REF directives must precede any statements that cause code
to be generated; this includes all machine language in-
structions and directives BOUND, DATA, DO1, END,
GEN, TEXT, and TEXTC. REF directives must not precede
DEF directives.

Example 29. REF Directive

REF IOCONT, TAPE, TYPE, PUNCH

This statement identifies the labels IOCONT, TAPE,
TYPE, and PUNCH as symbols for which external defi-
nitions will be required at load time.

Example 30. REF Directive

Qisan external reference.

REF Q

B GEN,16,16 Q,$ The value of an external
reference maybe placed
in any portion of a ma-

chine's word.

LW, 2 Q Qisanexternal reference.

SREF Secondary External References

The SREF directive is similar to REF and has the form

label command argument

SREF symboll[,symbolz Jeeer symboln]

where the "symbol, " have the same meaning as for REF.

A label field entry is ignored unless it is the target lobel
of & GOTO search.

Symbol Manipulation 25

SREF differs from REF in that REF causes the loader to load
routines whose labels it references whereas SREF does not.

Instead, SREF informs the loader that if the routines whose
labels it references are in core, then the loader should
satisfy the references and provide the interprogram linkage.
If the routines are not in core, SREF does not cause the
loader to load them; however, it does cause the loader to
accept any references within the program to the symbols
without considering them to be unsatisfied external
references.

Like REF, SREF directives must precede any statements that

cause code to be generated and must follow all DEF
directives.

DATA GENERATION
GEN Generate a Value
The GEN directive (Examples 31 through 34) produces a

hexadecimal value representing the specified bit configu-
ration. It has the form

label command argument

[label] | GEN, field list | valve list

where

label is any valid symbol. Use of a label is
optional. When present, it is defined as the
current volue of the execution location counter
and identifies the first byté genérated. The loca-
tion counters are incremented by the number of
words generated.

field list is a list of evaluatable expressions that
define the number of bits comprising each field.
The sum of the field sizes must be a positive
integer value that is a multiple of elght and is
less than or equal to 128.

Example 33. GEN Directive

value list is a list of expressions that define the
contents of each generated field. This fist may
contain forward references. The value, repre=-
sented by the value list, is assembled into the
field specified by the field list and is stored in
the defined location (see Example 33).

There is a one-to-one correspondence between the entries

in the field list and the entries in the value list; the code is
generated so that the first field contains the first value,
the second field the second value, efc. The value produced
by a GEN directive appears on the object program listing

as eight hexadecimal digits per line.

External references, forward references, and relocatable
addresses may be generated in any portion of a machine
word; i.e., an addres: may be gerierated in a field that

overlaps word bound-ries.

A forward reference that does not have resolution func-
tion applied to it is generated with word resolution when it
appears in a GEN directive, a DATA directive, or a COM
reference line.

Example 31. GEN Directive

GEN, 16,16 -251,89 Produces two 16-bit hexa-
decimal values: FFO5 and
0059.
Example 32. GEN Directive
B EQU X'FFFFFFFF'
GEN, 64 B Produces: 00000000

FFFFFFFF

BOUND 4

Specifies word boundary.
LAB GEN,8,8,8 8,9,10 Produces three consecutive bytes; the first is identified as LAB and
contains the hexadecimal value 08; the second contains the hexadeci-
mal value 09; and the third byte contains the hexadecimal value OA.

LW, 5 L(2) Load register 5 with the fiteral value 2.

L8, 3 LAB,5 Load byte into register 3. LAB specifies the word boundary at which
the byte string begins, and the value of the index register (i.e., the
value 2 in register 5) specifies the third byte in the string (byte string
numbering begins at 0). Thus, this instruction loads the third byte of

LAB (the value OA) into register 3.

26 Data Generation

Example 34. GEN Directive

Defines ALPHA as
the decimal value
15.

Defines BETA as
the decimal value
12.

Defines A as the
current focation
and stores the

decimal value 27

ALPHA EQU X'F!
BETA EQU xX'c!

A GEN,32 ALPHA +BETA

in 32 bits.
In this case, the GEN line is equivalent to
A GEN, 32 27
COM Command Definition

The COM directive (Examples 35 through 38) enables the
programmer to describe subdivisions of computer words and
invoke them simply. This directive has the form

label command argument
name COM, field list value list
where
name . is any valid symbol and identifies the com-

mand being defined. The "name" must not be a
local symbol nor the same as a Sigma machine
instruction or Symbol directive.

field list is a list of evaluatable expressions that
define the number of bits comprising each field.
The sum of the elements in this list must be a
positive integer value that is a multiple of eight
bits and is less than or equal to 128.

value list is a list of constants or intrinsic func-
tions (see below) that specify the contents of each
field.

When the COM directive is encountered, the label, field
list, and value list specifications are saved. When the
label of the COM directive subsequently appears in the
command field of a statement called a "COM reference
line", that statement will be generated with the configura-
tion specified by the COM directive.

In Symbol, an asterisk preceding a field list element on the
COM definition line specifies that the absence of a corres-
ponding parameter on the COM reference line is to be
flagged as an error. See Example 8.

The use of commands defined by a COM is referenced as
follows: the COM command definition must precede all
references to it.

The COM directive differs from GEN in that Symbol gen-
erates a value at the time it encounters a GEN directive,
whereas it stores the COM directive and generates a value
only when a COM reference line is encountered. If the
reference line is labeled, the generated value will be
identified by that value.

In Symbol, if a COM directive is to produce four bytes, it
will be preceded af reference time by an implicit BOUND,4.

Certain intrinsic functions enable the user to specify in the
COM directive which fields in the reference lines will
contain values that are to be generated in the desired
configuration. These functions are

CF
AF
AFA

CF Command Field

This function (Example 35) refers to the command field Iist
in a reference line of a COM directive. Its format is

CF(element number)

The "CF" specifies the command field, and "element num-
ber" specifieswhich element in the field is being refer-
enced. "Element number" enclosed in parentheses is re-
quired. Since a machine language instruction mnemonic or
assembler directive must be the first element in the com-
mand field on the COM reference line, the element num-
ber for the CF function must be two or greater.

Example 35. COM Directive and CF Function

BYT COM, 8,8 CF(2), CF(3)

XX :BYT,35,X'3C' |
3 HEEE

The COM directive defines a 16-bit area consisting of
two 8-bit fields. It further specifies that data for the
first 8-bit field will be obtained from command field
2(CF(2)) of the COM reference line, and that data for
the second 8-bit field will be obtained from command
field 3(CF3)). Therefore, when the XX reference line
is encountered, Symbol generates a 16-bit value, so
that the first eight bits contain the binary equivalent of
the decimal number 35and the second eight bits con-
tain the binary equivalent of the hexadecimal number 3C.

Data Generation 27

AF Argument Field

This function (Example 36) refers to the commond field list
in a reference line of a COM directive. lts format is

AF (element number)
The "AF" specifies the argument field, and "element num-
ber " specifies which element in the list of elements in

that field is being referenced. "Element number" enclosed
in parentheses is required.

Example 36. COM Directive and AF Function

XYZ COM, 16,16 AF(1), AF(2)

ALPHA ;EQU X271
ZZ XYz 65,ALPHA+X'FC!

o[o]4]1]o]1]1]p|
0 1516 A

Symbol stores the COM definition for later use. When
it encounters the ZZ reference line, it references the
COM definition in order to generate the correct con-
figuration. At that time, the expression ALPHA+X'FC'
is evaluated. AF(1)in the XYZ line refers to 65 in the
ZZ line; AF(2) refers to ALPHA+X'FC'.

Example 37. COM Directive and AFA Function

AFA Argument Field Asterisk

The AFA function (Example 37) determines whether the
specified argument in the COM reference line is preceded
by an asterisk. The format for this function is

AFA (element number)

where "AFA" identifies the function, and "element number "
specifies which element in the argument field of the COM
reference line is to be tested. "Element number" is re-
quired, and must be ericlosed in parentheses. The function
produces a value of 1 (true) if an asterisk prefix exists on
the argument designated; otherwise, it produces a zero value
(False).

DATA Produce Data Valie

DATA (Example 39) enables the programmer to represent data
conveniently within the symbolic program. It has the form

label command argument
[label] DATA[,f] valuey [,valuez, .. .,valuen]
where
fabel is any valid symbol. Use of a label is op-

tional. When present, it is defined as the cur-
rent value of the execution location counter and
is associated with the first byte generated by the
DATA directive. The location counters are in-
cremented by the number of words generated.

STORE COM,1,7,4,4

STORE, 4 *TOTAL

AFA(1), X'35', CF(2), AF(T)

The COM directive defines STORE as a 16-bit area with four fields. The AFA(1) intrinsic function tests whether an
asterisk precedes the first element in the argument field of the reference line. The first bit position of the area gen-
erated will contain the result of this test. The next seven bits of the area will contain the hexadecimal value 35. The
second element in the command field of the reference line will constitute the third field generated, while the first ele-
ment in the argument field of the reference line will constitute the last field.

When the reference line is encountered, Symbol defines a 16-bit area as follows:

Bit Positions Contents

0 The value 1 (because the asterisk is present in argument field 1).
1-7 The hexadecimal value 35.

8-11 The value 4.

12-15 The 4-bit value associated with the symbol TOTAL.

28 Data Generation

Example 38. COM Directive's Error Notification

MAP COM, *16,*16 CF(2), AF(1)

R MAP, 3 7

: Do]o|o|3[o|o|o|73
X ?"Ap's Elolob[ololotoaj

When the first reference line is encountered, Symbol defines a focation R and generates a 32-bit data word with the
values 3 and 7 in the left and right halfwords, respectively.

When the second reference line is encountered, an error notification is produced because the argument field entry is
missing. However, the assembly is not terminated; Symbol will define a location X and generate a 32-bit data word
with the values 5 and 0 (for the missing entry) in the left and right halfwords, respectively.

Example 39. DATA Directive

MASK1 DATA, 1 X'FF' Produces an 8-bit value identified as MASKT,

[FTF)
L
MASK2 DATA, 2 X'1EF’ Generates the hexadecimal value O1EF as a 16-bit quantity,

identified as MASK2.
) 5

BYTE DATA, 3 BA(L(59)) The byte address of the literal value 59 is assembled in a
. 24-bit field, identified as BYTE.

TEST DATA 0, X'FF' Generates two 4-byte quantities; the first contains zeros, and

the second, the hexadecimal value 000000FF. The first value
is identified as TEST.

OEOEaEan

DROBREGEE

DT4 DATA, 1 X'94', X'CF', X'AB'

Generates three 8-bit values, the first of which is identified
as DT4.

<;|4[c[F|A]B23

Data Generation

f is the field size specification in bytes; f may be
any evaluatable expression that results in an
integer value in the range 1< f < 16.

value; are the list of values to be generated. A
value may be a multitermed expression or any
symbol. An addressing function may be used to
specify the resolution of a value when an address
resolution other than the intrinsic resolution of
the execution location counter is desired.

DATA generates each value in the [ist into a field whose
size is specified by f in bytes, If f is omitted, four bytes
are assumed.

Constant values must not exceed those specified under
"Constants" in Chapter 2.

TEXT EBCDIC Character String

The TEXT directive (Example 40) enables the user to incorpe-
rate messages in his program to be output on some device other
than the typewriter via the Monitor's standard output sub-
routines, or output on the typewriter by some routine other
than the Monitor's standard one. Thisdirective has the form

label command argument
[labei] | TEXT ‘es'
where
label is any valid symbol. Use of a label is op-

tional. When present, it is defined as the current
value of the execution location counter and iden-
tifies the first byte of the character string gener-
ated by the TEXT directive.

'cs' is o character string constant {(see Chapter 2).

The character string is assembled in a binary-coded form in
a field that begins at a word boundary and ends at a word
boundary. The first byte contains the first character of the
character string, the second byte contains the second char-
acter, etc. If the character string does not require an even
multiple of four bytes for its representation, trailing blanks
are produced to occupy the space to the nextword boundary.

Example 40. TEXT Directive

COL1 TEXT C'VALUE OF X'

generates VIAIL U

30 Data Generation

TEXTC Text with Count

The TEXTC directive (Example 41) enables the user to incor-
porate messages in a program to be output on the type-
writer via the Monitor's standard typewriter output sub-
routine. This directive has the form

label command argument

{label] | TEXTC ‘es!

where "abel" and "cs" have the same meanings as for
TEXT.

The TEXTC directive provides o byte count of the storage
space required for the message. The count is placed in the
first byte of the storan» area and the character string
follows, beginning in ‘he second byte. The count repre-
sents only the number of characters in the character string;
it does not include the byte it occupies nor any trailing
blanks. The maximum number of characters for a single
TEXTC directive is 63.

In all other aspects, the TEXTC directive functions in the
same manner as the TEXT directive.

Example 41. TEXTC Directive

ALPHA TEXTC C'VALUE OF X SQUARED!
18|V IA|L
Ut ®)
F
S |Q A
R |E

LISTING CONTROL
PAGE Begin o New Page

The PAGE directive causes the assembly listing fo be ad-
vanced to a nhew page. This directive has the form

label command argument

PAGE

A label field entry is ignored by the assembler unless it is
the target label of a GOTO search. An argument field
entry is always ignored.

The PAGE directive is effective only at assembly time.
No code is generated for the object program as a result
of its use.

6. ASSEMBLY LISTINGS

The Symbol assembler canoperate asastand-alone processor
or under control of one of the XDS Monitors — BCM, BPM,
or BTM. In all cases the format of the assembly listing is
the same.

SYMBOL ASSEMBLY LfISTING

ASSEMBLY LISTING LINE

Each source image line containing a generative statement,
a statement that causes the assembler to generate object
code, contains the following information:

NNNNN Source image line number in decimal.
The XDS Symbol assembler produces listing lines according LLLLL Current execution location counter fo
to the format shown in Figure 2. word level in hexadecimal.
B Blank 1, 2, or 3, specifying the byte
EQUATE SYMBOLS LINE displacement from word boundary.
Each source image line that contains the equate symbols XX
(EQU) directive contains the following information: XXXX, Object code in hexadecimal listed in
XXXXXX, groups of 1 to 4 bytes.
NNNNN Source image line number in decimal. KXXXXXXX
LLLLL Value of argument field as a hexa- A Address classification flag:
decimal word address.
blank denotes a relocatable ad-
B Blank 1, 2, or 3, specifying the byte dress field.
displacement from word boundary.
A denotes an absolute address
or .
field.
XXXXXXXX Value of argument field as a 32-bit
value. F denotes an address field
containing a forward
SSS. .. Source image. reference.
Print
Position 1234567891011 121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Equate NNNNN L L L L L B S S S...
symbols or
line NNNNN X X X X X X XX S S S...
Assembly NNNNN LLLLL B XXXXXXXKX A S S S...
listing line
Ignored
source
image line NNNNN *S * S S S
Error line ** *ERROR
Literal LLLLL X X X X X X X X X
listing line
Symbol
abort line S A
Error) EC N N N
count line

Figure 2. Symbol Listing Format

Assembly Listings 31

X denotes an address field
containing an external
reference.

N indicates that the object code
produced for the source line
contains a relocatable item
(e.g., an address, a forward
reference, or external refer-
ence) in some field other than
the address field.

SSS. .. Source image

IGNORED SOURCE IMAGE LINE
The configuration

*S‘k

is printed in columns 33-35 for each statement skipped by
the assembler during a search fora GOTO label. NNNNN
and SSS. .. have the same meaning as in an assembly listing
line.

ERROR LINE

When an error is detected in a source image line, the line
immediately following begins with

***ERROR

and contains one or more error codes beneath the portion of
the source image line that is erroneous. Up to four error

codes may be given for a single line. Table 3 lists the error
codes and the severity level and significance of each code.

X ERROR IN SYMBOL

In most object languages, it is necessary for a processor to
communicate values to the loader, in addition to generating
object code to be placed in memory. Such values might be
load origins, transfer addresses, or external values. It isa
characteristic of the Sigma Standard Object Language that
these values are not associated with physical record formats,
but rather are passed as items of the language. A descrip-
tion of the Sigma Standard Object Language may be found
in any of the XDS Monitor reference manuals.

The X error is generated when the symbol assembler is re-
quired to generate an object language expression containing
a term which is not one of the following four types:

1. Integer

2. Address

32 Symbol Assembly Listing

3. External
4. Forward reference

The assembler generates an object language expression
whenever it needs to communicate to the loader one of the
following:

1. Load origin

2. Transfer address

3. DEF value

4, Nonstandard relocatfion

5. Satisfaction of forward reference

Example 42 illustrates several X type errors.

Example 42. X Type Assembly Listing Errors

DEF A improper DEF value
REF B
A EQU 'ABCDEF'

GEN,16,16 C,B

C EQU FS'1.5'

improper forward value

END A improper transfer address;
but notice that END B is

permissible.

LITERAL LISTING LINE

Any literals evaluated during assembly are listed immedi-
ately following the END line or following the error line(s)
containing the G and U codes, if they appear. Literals
are listed in the order in which they were evaluated, and
the listing line contains

LLLLL Current value of load location counter
to word level in hexadecimal.

XXXXXXXX Value of literal as a hexadecimal
memory word.
A Address classification flag.

Table 3. Symbol Error Codes

Code Severity! Significance

A 7 Arithmetic error caused when + or - operator is applied to items for which arithmetic operations
are undefined (e.g., - address, L(value) +1, BA(address - HA(address), etfc.).

C 7 Constant string error caused when an explicit constant string contains an invalid character.
This error also occurs when a decimal or floating-point constant occurs in a source line in a
stand-alone environment and the BC specification has been given in the CMP control message
(see XDS 90 10 53). The generated constant has an unpredictable value.

D 7 Duplicate definition error caused by an attempt to redefine a symbol that has already been
defined in the symbol table. The first definition is retained and all subsequent definitions
are flagged.

G C GOTO lakel has not been encountered prior to the END directive. All lines between the
GOTO and END directives are ignored when the GOTO label is missing. In this case, the
error line is prinfed after the END line.

1 7 Nonexistent instruction encountered in the command field of the symbolic line. A word of all
zeros is generated for the instruction.

L 7 Label error caused by the absence of a label from a field that requires one. The position of
the code indicates whether the flag applies to the label or argument field. This error code is
also given for symbols having more than eight characters.

M 7 Mandatory field is not present.

@] 3 Overflow (loss of significance) occurred during the conversion of a constant.

P 7 Parameter or usage error in a directive reference line (e.g., DEF, REF, or SREF out of order,
no label on EQU, or noncharacter-constant for TEXT).

S 7 Syntax error encountered during expression evaluation (e.g., unpaired parentheses, illegal
operation, etc.). A zero is returned for the expression value.

T 3 Truncation (loss of significance) occurred when a value was edited into a field.

U 7 Undefined symbol encountered in command or argument field of a source line (i.e., forward
reference undefined at the end of local symbol region or at the end of the program). When
this error occurs, the error line occurs after the END line, and it contains the error identifier,
the error code, and the undefined symbol (s).

\% 7 Invalid instruction error caused by a reference to an instruction that does not fall within the
scope of the current SYSTEM directive (e.g., use of a floating-point instruction when only
the basic instruction set was specified). The instruction is assembled correctly.

X 7 Object expression type is other than integer, address value, external reference, or forward

reference. In this case, a zero value is generated for the invalid expression. For example,
the source line END 'START' is invalid because 'START' is a character string constant and
cannot be evaluated as the acceptable expression type for this directive.

"he highest severity code encountered during the assembly is passed to the loader as the second byte of the Module
End load item for the object module. See BCM BP, RT Reference Manual, 90 09 53.

Symbo! Assembly Listing

33

SYMBOL ABORT LINE

If an assembly requires more working space than is available
in core memory, the assembler aborts the assembly and
prints the message

SA
on the listing output. The assembler then reads the next

source image line as the first line of a new assembly and
continues to the next END directive.

ERROR COUNT LINE
If at least one error is encountered during an assembly, the

last line of the listing output for that assembly contains the
message

EC NNN

where NNN is the decimal number of source lines that
contain errors.

SYMBOL DICTIONARY

At the end of each assembly listing, Symbol outputs a
dictionary of all nonlocal symbols defined and/or referenced
within the program. Local symbols are not included in the
dictionary.

34 Symbo! Assembly Listing

Nonlocal symbols are output in alphabetic order, sorted on
the first four characters, and in ascending order of sequence:
A-Z, 0-9, special characters.

The dictionary includes the following information arranged
as illustrated:

Column S 19
SYMBOL DICTIONARY
$5SSSSS DDDDDD
where
SSSSSSSS is the one- to eight-character symbol
name.
DDDDDD is one of the following:

1. The value of the symbol in either address or
constant format, according fo its type.

2. X indicating an external reference (REF).

3. U indicating an undefined symbol.

SYMBOL CROSS-REFERENCE LISTING

An optional cross-reference (concordance) listing of all
symbols used in the program can be produced along with
the symbol dictionary. The cross-reference listing is pro-
duced by including the "CN" opfion on the Symbol
Monitor control card. The format of this card and of the
listing is explained in Chapter 7, "Symbol Operations".

1. OPERATIONS

Symbol has been designed to run under confrol of the
Sigma Basic Control Monitor (BCM), Batch Processing
Monitor (BPM), or Batch Time-Sharing Monitor (BTM).
This chapter presents a brief discussion of Symbol operations
under the BPM system. Assemblies under the BCM and BTM
systems are processed in a similar manner, but the reader

is advised to consult the appropriate Monitor reference
manual for additional details.

ASSIGN CONTROL COMMAND

Appearing next in the run deck are any ASSIGN cards
relating to the assembly. Normally, ASSIGN cards will

not be needed, since the system has the following standard
default assignments.

Logical Device or File Physical Device
BO Card punch
GO Magnetic disk
LO Line printer
SI Card reader

BO, LO, and SI may be reassigned, by using the appro-
priate ASSIGN card.

SYMBOL CONTROL COMMAND

The Symbol control command has the following format:
I SYMBOL option ... ,opfion
where the options are
BO specifies binary output.
CN specifies a concordance listing.
GO specifies an output GC file.
LO specifies listing output.
BA specifies batch-assembly mode.
The options may be specified in any order. If none are

specified, BO and LO are assumed. Source input (S1) is
always assumed.

PROGRAM DECK STRUCTURES

The Symbol assembler accepts only source images. If source
input is from magnetic tape and the BA option has been
specified, Symbol reads and assembles successive files until

it encounters two successive end-of-file sentinels. Ifsource
input is from cords and the BA option has been specified,
Symbol reads and assembles successive files until it en-
counters either two successive IEOD cards or any Monitor
confrol card other than an IEOD card.

CONCORDANCE LISTING

A concordance (cross-reference) listing of all symbols used
in the program is produced when the CN option is given on
the Symbol control command. The listing is produced by
modifying the standard symbol dictionary listing, which
prints for every assembly, '

The information printed is symbol name, value, and refer-
ence line numbers. A sample entry might appear as

ALPHA 00000005 10 17 22 30

which means that symbol ALPHA has the hexadecimal value
5 and appears on source program line numbers 10, 17, 22,
and 30. The asterisk following line 22 means that ALPHA
appeared in the label field.

Concordance information is memory resident and increases
space requirements by one word per reference.

BTM OPERATIONS

Input is typed directly at the user's terminal or from a file.
Output is a program listing and/or an assembled object pro-
gram which may be loaded and executed by the Loader sub-
system (see BTM User's Guide, 90 16 79).

INPUT/OUTPUT ASSIGNMENTS

Prior to calling the Symbol subsystem, it is possible to make
input/output assignments by use of the Executive ASSIGN
command. Input/output assignments are listed in Table 4.

Table 4. Input/Qutput Assignments

Symbol Description

M:SI Source language input. The default
assignment is fo the user's terminal. An
alternative is for the user to specify a
file previously created by use of the
EDIT subsystem.

Listing output. Default assignment is to
the user's terminal,

Operations 35

Table 4. Input/Qutput Assignments (cont.)

Symbol Description

M:BO Binary output of assembled object pro-
gram. By default this goes into temporary
file BOTEMPx, where "x" is the special
ID for the user's terminal. The user may
also specify a file of his own. This is the
file to be specified to the Loader when it
is desired to run the program.

ASSEMBLER OPTIONS

The subsystem is called following the Executive prompt
character by typing SY. The Executive will then type the
rest of the word and turn control over to the Symbol Sub-
system, which then requests a list of options. The operator
may specify options listed in Table 5, separating them
with commas. If no options are specified (carriage return
only), all the options listed are assumed. If the operator
specifies any options, he gets only those options.

Table 5. Symbol Options

Symbol Option

BO Binary output of an assembled object
program.

LO Output a program listing.

CN Include a cross-reference list in the pro-

gram listing. This must be used in con-
junction with the LO option; CN is
meaningless if used alone.

SD Include special symbol tables for use by
the Loader subsystem's debugging feature
at run-time.

36 BTM Operations

The following is an example of a Symbol assembly with
source input from a file on the disk, and listing output fo
a file on the disk. All options are selected with the excep-
tion of the debugging feature symbol tables (SD).

_!-ASSIGN M:LO, (FILE, CMPLO)

TASSIGN M:Sl, (FILE, CMPS)

1SYMBOL

OPTIONS: RO, LO, CN

* * END OF ASSEMBLY * *

LISTING FORMAT

If the program listing :s typed on the user's terminal, it will
automatically be reformatted to fit the carriage width. Each
listing line will be typed as two lines:

1. The first line will contain the source image.

2. The second line will contain the line number and ob-
ject code portion of the normal listing. In addition,
if the source file was on disk in EDIT format, the EDIT
file sequence number will be typed in decimal format.

If the assembly listing is not displayed at the terminal, any
errors found in the assembly are displayed both at the ter-
minal and in the listing file. Three lines are typed at the
terminal :

1. The offending source line.

2. The normal Symbol error indicator (*****) and a letter
positioned under the image.

3. The line number, object code produced, and sequence
number of the record.

A '..APPEND|X A. SUMMARY OF SYMBOL DIRECTIVES

In this summary brackets are used to indicate optional items.

[I abe IJ

name

[label]

Uobel]

(label]

label

[iabel]

(labe 1]

label

ASECT

BOUND

COM,, field list

CSECT

DATA,]

DEF

DO1

END

EQU

GEN, field list
GOTO[, k]

LOC [, n]

LOCAL

ORG [, n]

PAGE

REF

boundary

value list

[value]

volue1[, ey, voluen]

symbo|] e, symboln]

exp

[exp]

exp

value list
|0be|][, ey |c1beln]

location

[name] feee numen]

|ocation

sym‘oo|] R symboin]

Function

Declares program section "label" as an absolute section
with no memory protection and sets location counters fo
absolute zero.

Advances the execution location counter to a byte mul-
tiple of "boundary" and advances the load location
counter the same number of bytes.

Describes a command skeleton; "v;" specifies the contents
of each "field"; "label" is the symbol by which the com-
mand skeleton is referenced.

Declares program section "label" as a relocatable control
section,

Generates each value in the list of v into a field whose
size is specified by f in bytes. If f is omitted, field
size of 4 bytes is assumed.

Declares that the "symbol;" may be referenced by other
separately assembled programs.

If the value of "exp" is greater than zero, processes the
one statement following the DO1, "exp" times, then
continues the assembly af the next statement. If "exp"
<0, skips the statement following DOT and resumes the
assembly.

Terminates the program. Optionally provides the starting
address of the program.

Sets "label" equal to the value of "exp".

Produces a hexadecimal value representing vj in the
number of bits specified by each field in "field list".

Resumes assembly at the statement whose label corre-
sponds to the kth "label™.

Sets the execution location counter (S) to the value
"location" and sets its resolution specification to n,
where the value of nis 1, 2, 4, or 8.

Terminates existing local symbol region and initiates a
new region where the "name." are local symbols.

Sets both the load location counter (S$) and the execu-
tion location counter (3) to the value "location" and sets
their resolution specifications to n, where the value of
nis1, 2, 4, or 8.

Upspaces assembly listing to the top of form.

Declares that the "symboli” are references to externally
defined symbols.

Appendix A

27

28

25

22

22

24

26

22

16

23

30

25

37

Form

(iabel]

[label]

[|Gbel_|

38

RES[, n]
SREF

SYSTEM

TEXT

TEXTC

Appendix A

syrﬂboll L

name

e symboln]

Function

Advances both location counters ($ and $8) by u n=sized
units, If n is omitted, a size of 4 bytes is assumed.

Declares that the "symbol." are secondary external
i
references.

Indicates which instruction set is correct for the assembly.

Assenibles "cs" (character string constant) in biaary-
coded format for use as an output message.

Assembles "cs" (character string constant) in binary=
coded format, preceded by a byte count, for use ds an
oufput message.

Page
18

25

21

30

30

Required syntax items are underlined whereas optional items
are not. The following abbreviations are used:

indirect designator

displacement expression

APPENDIX B. SUMMARY OF SIGMA INSTRUCTION MNEMONICS

m mnemonic
r register expression
v value expression
a address expression
X index expression
d

Mnemonic Syntax

LOAD/STORE

L1 mrov

LB m,r Fa,x

LH m,r *a, x

LW m,r o *a,x

LD m,r *a, X

LCH m,r *a,x

LAH m,r *a,x

LCW m,r *a,x

LAW m,r *a,x

LCD m,r *a,x

LAD m,r *a,x

LS m,r *a,x

LM E *a, X

LCFI m __I_TV

LCI m v

LFI m v

LC m *a, x

LF m *a, x

LCF m *a, x

LAS mr g, x

LMS m,r *a,x

XwW m,r *g,x

STB m,r g, x

STH m,r *a, x

STW m,r *ag,x

STD m,r *ag,x

STS ?Tl__—,__l_ *a, x

STM m,r a,x

STCF m *a, x

ANALYZE AND INTERPRET

~

ANLZ
INT

FIXED-POINT ARITHMETIC

3

|

3

|

*a, x

*a, x

Al
AH
AW
AD
SH

3

|

3

<

~

*] <

|2
&S

FE]

3

|

* % ¥
laloje
SIS

X X X =

Codes for required opfions are

Sigma 6 or 7
Privileged
Decimal Option
Floating-Point Option
Lock Option
P Memory Map Option
Special Feature —not implemented
on all machines

T~ TMmog o

w
=

Function Equivalent To:

Required
Options

Load Immediate

Load Byte

Load Halfword

Load Word

Load Doubleword

Load Complement Halfword

Load Absolute Halfword

Load Complement Word

Load Absolute Word

Load Complement Doubleword

Load Absolute Doubleword

Load Selective

Load Multiple

Load Conditions and Floating Control Immediate
Load Conditions Immediate

Load Floating Control Immediate
Load Conditions

Load Floating Confrol

Load Conditions and Floating Control
Load and Set

Load Memory Status

Exchange Word

Store Byte

Store Halfword

Store Word

Store Doubleword

Store Selective

Store Multiple

Store Conditions and Floating Control

Analyze
Interpret

Add Immediate
Add Halfword
Add Word

Add Doubleword
Subtract Halfword

SF
SF

Appendix B

39

Mnemonic Syntax

FIXED-POINT ARITHMETIC (cont.)

SW m,r *a,x
SD m,r *a,x
M1 mr v
MH m,v *a,x
MW m,r *a, x
DH m,r *g, X
DW ~m—,7 *;, X
AWM m, ot *a,x
MTB m, v *a,x
MTH m, v *a,x
MTW m, v *a,x
COMPARISON

Cl m,r v

CB mr *a,x
CH m,r *a,x
cw m,r *a,x
CD m,r *a,x
Cs m,r *a,x
CLR m,r *a,x
CLM E *E, X
LOGICAL

OR m,r *a,x
EOR m,r *a,x
AND m,r *a,x
SHIFT

S m,r *a,x
SLS mr v, X
SLD mr v, x
SCS mrov,x
SCD mr v,
SAS mr o v,x
SAD mr v,
SF m,r *a,x
SFS mr v, X
SFL mr v, X
CONVERSION

CVA m,r *a,x
CVS m,r *a,x

FLOATING-POINT ARITHMETIC

*

\
~

FAS m,r *a,x
FAL m,r *a,x
FSS m,r *a,x
FSL m,r *a,x
FMS m,r *a,x
FML m,r *a,x
FDS m,r *a,x
FDL mr o *a,x

|

40 Appendix B

Function Equivalent To:

Required
Options

Subtract Word
Subtract Doubleword
Multiply Immediate
Multiply Halfword
Multiply Word

Divide Halfword
Divide Word

Add Word to Memory
Modify and Test Byte
Modify and Test Halfword
Modify and Test Word

Compare Immediate

Compare Byte

Compare Halfword

Compare Word

Compare Doubleword

Compare Selective

Compare with Limits in Register
Compare with Limits in Memory

OR Word
Exclusive OR Word
AND Word

Shift

Shift Logical, Single
Shift Logical, Double
Shift Circular, Single
Shift Circular, Double
Shift Arithmetic, Single
Shift Arithmetic, Double
Shift Floating

Shift Floating, Short
Shift Floating, Long

Convert by Addition
Convert by Subtraction

Floating Add Short
Floating Add Long
Floating Subtract Short
Floating Subfract Long
Floating Multiply Short
Floating Multiply Long
Floating Divide Short
Floating Divide Long

~

b B W o e e 2 e o M B o

Required
Mnemonic Syntax Function Equivalent To: Options

DECIMAL (Decimal instructions are standard on Sigma 6.)

DL m, v *g,x Decimal Load D
DST m,v *a,x Decimal Store D
DA m,v *a,x Decimal Add D
DS m,v *a,x Decimal Subtract D
DM m,v *a,x Decimal Multiply D
DD m,v *a,x Decimal Divide D
DC m,v *a,x Decimal Compare D
DSA m_ *a,x Decimal Shift Arithmetic D
PACK m,v *a,x Pack Decimal Digits D
UNPK m,v *a,x Unpack Decimal Digits

BYTE STRING

MBS m,r d Move Byte String 7
CBS mr d Compare Byte String 7
TBS m,r d Translate Byte String 7
TTBS mr d Translate and Test Byte String 7
EBS —mj g Edit Byte String D
PUSH DOWN

PSW m,r *a,x Push Word

PLW m,r *a,x Pull Word

PSM m,r *a, x Push Multiple

PLM m,r *a,x Pull Multiple

MSP m_z__r_ *a, x Modify Stack Pointer

EXECUTE/BRANCH

EXU m *a, x Execute

BCS m,v *a,x Branch on Conditions Set

BCR m, v *a,x Branch on Conditions Reset

BIR mr *a,x Branch on Incrementing Register

BDR m,r *a,x Branch on Decrementing Register

BAL m,r *a,x Branch and Link

B m *a, x Branch BCR,0 g, x

BE m *a, x (Branch if Equal BCR,3 *a,x

BG m *a, X Branch if Greater Than BCS,2 *a,x
BGE m *a, x Branch if Greater Than or Equal to BCR,1 *a,x

BL m *a, x Branch if Less Than BCS, 1 *a,x

BLE E *E, X Branch if Less Than or Equal fo BCR, 2 *E, X
BNE m *a, x Branch if Not Equal BCS,3 *a,x
BAZ E *E, X EijZ?iQF:er4 Branch if Implicit AND is Zeror ' BCR, 4 *E, X
BANZ m *a, x lnsfrzcrions Branch if Implicit AND is Nonzero BCS, 4 *q,x
BEZ m *a, x Branch if Equal to Zero BCR,3 *qg, x
BNEZ m *§, P Branch if Not Equal to Zero BCS,3 *a, x
BGZ E *a, x Branch if Greater Than Zero BCS,2 *a,x
BGEZ m *a, x Branch if Greater Than or Equal to Zero BCR, 1 *q, x
BLZ m *a, % Branch if Less Than Zero BCS,1 *a,x
BLEZ m *a, x LBronch if Less Than or Equal to Zero BCR, 2 *E, x

t . A .
See CW instruction in Xerox Sigma Computer Reference Manual.

Appendix B 41

Required
Mnemonic Syntax Function Equivalent To: Optfions

EXECUTE/BRANCH (cont.)

BOV m *a, X (Branch if Overflow BCS,4 *a,x
BNOV E *E, X For Use After Branch if No Overflow BCR, 4 *E, X
BC m *a, x Fixed-Point Branch if Carry BCS,8 *a,x
BNC m *a, x Arithmetic { Branch if No Carry BCR,8 *qg,x
BNCNO m *a, x Instructions Branch if No Carry and No Overflow BCR, 12 *ag, x
BWP m *a, x Branch if Word Product BCR,4 *a,x
BDP mo o, x Branch if Doubleword Product BCS,4 *a,x
For Use After

BEV m *a, X Fixed=Point Branch if Even (number of 1's shifted) BCR,8 *a,x
BOD m *a, x Shift Instruc—- | Branch if Odd (number of 1's shifted) BCS,8 *a,x

- - tions -
BID m *a, x FDor .UselAffer Branch if Illegal Decimal Dig - BCS,8 *a, x
BLD m *a, X ecima’ { Branch if Legal Decimal Digif BCR,8 *a,x

- - Instructions =
BSU m *a, x (Branch if Stack Underflow BCS,2 *a,x
BNSU E *_E_, X Branch if No Stack Underflow BCR, 10 ’E, x
BSE m *a, X Branch if Stack Empty .BCS, 1 *a,x
BSNE E *E, X gz;hué)ivf\:fer4 Branch if Stack Not Empty BCR, 1 *E, X
BSF m *a, x Instructions Branch if Stack Full BCS,4 *a,x
BSNF m *a, x Branch if Stack Not Full BCR, 15 *a, x
BSO m *a, x Branch if Stack Overflow BCS,8 *a,x
BNSO E *_E_, X Branch if No Stack Overflow BCR, 8 *E, x
BIOAR m *a, X (Branch if 1/O Address Recognized BCR,8 *a, x
BIOANR m *a, x Branch if I/O Address Not Recognized BCS,8 *a,x
BIODO E *E, X For Use After Branch if 1/O Device Operating BCS, 4 *E, X
BIODNO m *a, x Input/Output Branch if 1/O Device Not Operating BCR,4 *a,x
BIOSP m o *a,x lnspfmcﬁon'z Branch if 1/O Start Possible BCR,4 *q, x
BIOSNP m *a, x Branch if 1/O Start Not P~ssible BCS,4 *a,x
BIOSS m *a, x LBronch if 1/O Start Successful BCR,4 *a,x
BIOSNS E *§_, X Branch if 1/O Start Not Successful BCS, 4 *E, x
CALL
CALl m,v *a,x Call 1
CAL2 m,v *a,x Call 2
CAL3 m,v *a,x Call 3
CAL4 mv *a,x Call 4
CONTROL
LPSD m,r *a,x Load Program Status Doubleword P
XPSD m,r *a,x Exchange Program Status Doubleword P
LRP m *a,x Load Register Pointer P
MMC mrov Move to Memory Control P
LMAP mr Load Map 7MP
LPC m, T Load Program Control 7MP
LLOCKS m,r Load Locks LP
WAIT m *a,x Wait p
RD m,r *a,x Read Direct P
WD m,r *a,x Write Direct P
NOP! m *a,x No Operation
PZE E *E, X Positive Zero

t
Equivalent to a BCS instruction with r =0.

42 Appendix B

Required

Mnemonic Syntax Function Equivalent To: Options
INPUT/OUTPUT

S10 m,r *a,x Start Input/Output P

ite] m,r o *a,x Halt Input/Output P

T10 m,r o *a,x Test Input/Output p

DV m,r _*_a_,x Test Device p

AIO m,r *a,x Acknowledge Input/Qutput Interrupt P

|

Appendix B 43

_Reader Comment Form

XEROX

We would appreciate your comments and suggestions for improving this publication.

Publication No. Rev. Letter | Title

Current Date

How did you use this publication?
D Learning E] Installing
[_] Reference E] Mamntainmg

D Sales
D Operating

s the material presented effectively?

D Fully Covered

D Well Illustrated D Well Organized D Crenar

What is your overall rating of this publication?

D Veaery Good D Fair
D Good D Poor

D Very Poor

What is your occupation?

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. Toreport errors, Please use the Xerox Software improvement or Difficulty Report (1188) instead of this form.

n_

Your Name & Return Address

2190(12 72)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

PLEASE FOLD AND TAPE —
NOTE: U. S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 3953i
WALTHAM, MA
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:
HONEYWELL INFORMATION SYSTEMS

200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

i
‘e
E

————— ———- CUT ALONG
FOLD ALTNG LIN

-

._.__________.__._..,.__i

A—————— -

OLD ATONG LINE

'g-
r

— — . - — — ——— i — — — — — — — —

C— e — — -

Honeywell Information Systems
Inthe U.S.A.. 200 Smith Street, MS 486. Waltham, Massachusetts 02154
InCanada: 2025 Sheppard Avenue East. Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11. D.F

16514, 3C976, Printed in U.S.A,

XMO06, Rev, 0

	0001
	0002
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	replyA
	replyB
	xBack

